List of usage examples for java.lang Math sin
@HotSpotIntrinsicCandidate public static double sin(double a)
From source file:BackEnd.E_old_calculation.java
private FazorVektor calc_DE(double tau_real, double tau_image, DPoint Rp, DPoint R0, DPoint R0m, DPoint deltaL) throws DelaunayError { DPoint R_0 = new DPoint(R0.getX(), R0.getY(), R0.getZ()); DPoint R_0m = new DPoint(R0m.getX(), R0m.getY(), R0m.getZ()); R_0.setY(R0.getY() + R0_bundleY); // bundle korektura pre jeden druhy SMER R_0.setZ(R0.getZ() + Math.cos(beta) * R0_bundleZ); // priemety R_0.setX(R0.getX() + Math.sin(beta) * R0_bundleZ); R_0m.setY(R0m.getY() - R0_bundleY); // bundle korektura pre jeden druhy SMER R_0m.setZ(R0m.getZ() + Math.cos(beta) * R0_bundleZ); // priemety R_0m.setX(R0m.getX() + Math.sin(beta) * R0_bundleZ); // System.out.println( "R_0= " + R_0 ); // System.out.println( "Rp= " + Rp ); // System.out.println( "deltal= " + deltaL ); double K = 1 / (4 * Math.PI * constants.getEpsi0() * constants.getEpsi1()); // kontanta DPoint R_r = help.substract(Rp, R_0); // rozdiel vektorov Rp a RO DPoint R_m = help.substract(Rp, R_0m); // rozdiel vektorov RP a RO mirror DPoint R_r_unit = new DPoint(R_r); DPoint R_m_unit = new DPoint(R_m); // R_r_unit.setX(R_r_unit.getX()/get_ABS(R_r)); // R_r_unit.setY(R_r_unit.getY()/get_ABS(R_r)); // R_r_unit.setZ(R_r_unit.getZ()/get_ABS(R_r)); // /* w w w . j a v a2 s . c o m*/ // R_m_unit.setX(R_m_unit.getX()/get_ABS(R_m)); // R_m_unit.setY(R_m_unit.getY()/get_ABS(R_m)); // R_m_unit.setZ(R_m_unit.getZ()/get_ABS(R_m)); double menovatel_r = 0; double menovatel_m = 0; menovatel_r = Math.pow(get_ABS(R_r), 3); menovatel_m = Math.pow(get_ABS(R_m), 3); double DELTA_l = get_ABS(deltaL); // //double DELTA_l = 1; //Rozptie.getKrok(); FazorVektor deltaE = new FazorVektor(new Complex(0, 0), new Complex(0, 0), new Complex(0, 0)); deltaE.setX_Real(K * (((tau_real * DELTA_l * R_r_unit.getX()) / menovatel_r) - ((tau_real * DELTA_l * R_m_unit.getX()) / menovatel_m))); deltaE.setY_Real(K * (((tau_real * DELTA_l * R_r_unit.getY()) / menovatel_r) - ((tau_real * DELTA_l * R_m_unit.getY()) / menovatel_m))); deltaE.setZ_Real(K * (((tau_real * DELTA_l * R_r_unit.getZ()) / menovatel_r) - ((tau_real * DELTA_l * R_m_unit.getZ()) / menovatel_m))); deltaE.setX_Imaginary(K * (((tau_image * DELTA_l * R_r_unit.getX()) / menovatel_r) - ((tau_image * DELTA_l * R_m_unit.getX()) / menovatel_m))); deltaE.setY_Imaginary(K * (((tau_image * DELTA_l * R_r_unit.getY()) / menovatel_r) - ((tau_image * DELTA_l * R_m_unit.getY()) / menovatel_m))); deltaE.setZ_Imaginary(K * (((tau_image * DELTA_l * R_r_unit.getZ()) / menovatel_r) - ((tau_image * DELTA_l * R_m_unit.getZ()) / menovatel_m))); return deltaE; }
From source file:CircleLayoutTest.java
public void layoutContainer(Container parent) { Insets insets = parent.getInsets(); int containerWidth = parent.getSize().width - insets.left - insets.right; int containerHeight = parent.getSize().height - insets.top - insets.bottom; int xradius = (containerWidth - maxComponentWidth) / 2; int yradius = (containerHeight - maxComponentHeight) / 2; setSizes(parent);/*from w w w . j a va2 s. c o m*/ int centerX = insets.left + containerWidth / 2; int centerY = insets.top + containerHeight / 2; int comCount = parent.getComponentCount(); for (int i = 0; i < comCount; i++) { Component c = parent.getComponent(i); if (c.isVisible()) { Dimension size = c.getPreferredSize(); double angle = 2 * Math.PI * i / comCount; int x = centerX + (int) (Math.cos(angle) * xradius); int y = centerY + (int) (Math.sin(angle) * yradius); c.setBounds(x - size.width / 2, y - size.height / 2, size.width, size.height); } } }
From source file:BackEnd.E_calculation.java
private FazorVektor calc_DE(double tau_real, double tau_image, DPoint Rp, DPoint R0, DPoint R0m, DPoint deltaL) throws DelaunayError { DPoint R_0 = new DPoint(R0.getX(), R0.getY(), R0.getZ()); DPoint R_0m = new DPoint(R0.getX(), R0.getY(), R0.getZ()); R_0.setY(R0.getY() + R0_bundleY); // bundle korektura pre jeden druhy SMER R_0.setZ(R0.getZ() + Math.cos(beta) * R0_bundleZ); // priemety R_0.setX(R0.getX() + Math.sin(beta) * R0_bundleZ); R_0m.setY(R0m.getY() - R0_bundleY); // bundle korektura pre jeden druhy SMER R_0m.setZ(R0m.getZ() + Math.cos(beta) * R0_bundleZ); // priemety R_0m.setX(R0m.getX() + Math.sin(beta) * R0_bundleZ); // System.out.println( "R_0= " + R_0 ); // System.out.println( "Rp= " + Rp ); // System.out.println( "deltal= " + deltaL ); double K = 1 / (4 * Math.PI * constants.getEpsi0() * constants.getEpsi1()); // kontanta DPoint R_r = help.substract(Rp, R_0); // rozdiel vektorov Rp a RO DPoint R_m = help.substract(Rp, R_0m); // rozdiel vektorov RP a RO mirror DPoint R_r_unit = new DPoint(R_r); DPoint R_m_unit = new DPoint(R_m); R_r_unit.setX(R_r_unit.getX() / get_ABS(R_r)); R_r_unit.setY(R_r_unit.getY() / get_ABS(R_r)); R_r_unit.setZ(R_r_unit.getZ() / get_ABS(R_r)); R_m_unit.setX(R_m_unit.getX() / get_ABS(R_m)); R_m_unit.setY(R_m_unit.getY() / get_ABS(R_m)); R_m_unit.setZ(R_m_unit.getZ() / get_ABS(R_m)); double menovatel_r = Math.pow(get_ABS(R_r), 2); double menovatel_m = Math.pow(get_ABS(R_m), 2); double DELTA_l = get_ABS(deltaL); ////from w w w . jav a2 s .c o m //double DELTA_l = 1; //Rozptie.getKrok(); FazorVektor deltaE = new FazorVektor(new Complex(0, 0), new Complex(0, 0), new Complex(0, 0)); deltaE.setX_Real(K * (((tau_real * DELTA_l * R_r_unit.getX()) / menovatel_r) - ((tau_real * DELTA_l * R_m_unit.getX()) / menovatel_m))); deltaE.setY_Real(K * (((tau_real * DELTA_l * R_r_unit.getY()) / menovatel_r) - ((tau_real * DELTA_l * R_m_unit.getY()) / menovatel_m))); deltaE.setZ_Real(K * (((tau_real * DELTA_l * R_r_unit.getZ()) / menovatel_r) - ((tau_real * DELTA_l * R_m_unit.getZ()) / menovatel_m))); deltaE.setX_Imaginary(K * (((tau_image * DELTA_l * R_r_unit.getX()) / menovatel_r) - ((tau_image * DELTA_l * R_m_unit.getX()) / menovatel_m))); deltaE.setY_Imaginary(K * (((tau_image * DELTA_l * R_r_unit.getY()) / menovatel_r) - ((tau_image * DELTA_l * R_m_unit.getY()) / menovatel_m))); deltaE.setZ_Imaginary(K * (((tau_image * DELTA_l * R_r_unit.getZ()) / menovatel_r) - ((tau_image * DELTA_l * R_m_unit.getZ()) / menovatel_m))); return deltaE; }
From source file:com.kentdisplays.synccardboarddemo.Page.java
/** * Sets up the drawing object data for use in an OpenGL ES context. * * @param is InputStream to the page to load the path data from. *//*w w w. ja v a 2 s. c o m*/ public Page(InputStream is, int glProgram, int direction) { this.mModel = new float[16]; this.mGlProgram = glProgram; // Calculate the coordinates from the given path. ArrayList<Path> paths = pathsFromSamplePageInputStream(is); float finalCoords[] = {}; float finalNormals[] = {}; float finalColors[] = {}; mNumberOfPaths = paths.size(); for (int i = 0; i < mNumberOfPaths; i++) { Path path = paths.get(i); float x1 = (path.x1 / 13942 * 2) - 1; float y1 = (path.y1 / 20280 * 2) - 1; float x2 = (path.x2 / 13942 * 2) - 1; float y2 = (path.y2 / 20280 * 2) - 1; float width = path.width / 3000; width = width < 0.013f ? 0.013f : width; // Width should be at least 0.013 float distance = (float) Math.sqrt(Math.pow(x2 - x1, 2) + Math.pow(y2 - y1, 2)); float angle = (float) Math.PI / 2 - (float) Math.asin((x2 - x1) / distance); float xdiff = (width / 2) * (float) Math.sin(angle); float ydiff = (width / 2) * (float) Math.cos(angle); float coords[] = { x1 - xdiff, y1 - ydiff, 1.0f, // top left x2 - xdiff, y2 - ydiff, 1.0f, // bottom left x1 + xdiff, y1 + ydiff, 1.0f, // top right x2 - xdiff, y2 - ydiff, 1.0f, // bottom left x2 + xdiff, y2 + ydiff, 1.0f, // bottom right x1 + xdiff, y1 + ydiff, 1.0f, // top right }; float normals[] = { 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, }; float colors[] = { 0.2f, 0.709803922f, 0.898039216f, 1.0f, 0.2f, 0.709803922f, 0.898039216f, 1.0f, 0.2f, 0.709803922f, 0.898039216f, 1.0f, 0.2f, 0.709803922f, 0.898039216f, 1.0f, 0.2f, 0.709803922f, 0.898039216f, 1.0f, 0.2f, 0.709803922f, 0.898039216f, 1.0f, }; finalCoords = Floats.concat(finalCoords, coords); finalNormals = Floats.concat(finalNormals, normals); finalColors = Floats.concat(finalColors, colors); } ByteBuffer bbVertices = ByteBuffer.allocateDirect(finalCoords.length * 4); bbVertices.order(ByteOrder.nativeOrder()); mPageVertices = bbVertices.asFloatBuffer(); mPageVertices.put(finalCoords); mPageVertices.position(0); ByteBuffer bbNormals = ByteBuffer.allocateDirect(finalNormals.length * 4); bbNormals.order(ByteOrder.nativeOrder()); mPageNormals = bbNormals.asFloatBuffer(); mPageNormals.put(finalNormals); mPageNormals.position(0); ByteBuffer bbColors = ByteBuffer.allocateDirect(finalColors.length * 4); bbColors.order(ByteOrder.nativeOrder()); mPageColors = bbColors.asFloatBuffer(); mPageColors.put(finalColors); mPageColors.position(0); // Correctly place the page in the world. Matrix.setIdentityM(mModel, 0); switch (direction) { case 0: Matrix.translateM(mModel, 0, 0, 0, -mDistance); //Front. break; case 1: Matrix.translateM(mModel, 0, -mDistance, 0, 0); // Left. Matrix.rotateM(mModel, 0, 90, 0, 1f, 0); break; case 2: Matrix.translateM(mModel, 0, 0, 0, mDistance); // Behind. Matrix.rotateM(mModel, 0, 180, 0, 1f, 0); break; case 3: Matrix.translateM(mModel, 0, mDistance, 0, 0); // Right. Matrix.rotateM(mModel, 0, 270, 0, 1f, 0); break; } }
From source file:com.rapidminer.tools.expression.internal.function.AntlrParserTrigonometricTest.java
@Test public void sinDouble() { try {//from w w w.ja v a 2 s .co m Expression expression = getExpressionWithFunctionContext("sin(33.3)"); assertEquals(ExpressionType.DOUBLE, expression.getExpressionType()); assertEquals(Math.sin(33.3), expression.evaluateNumerical(), 1e-15); } catch (ExpressionException e) { assertNotNull(e.getMessage()); } }
From source file:Randoms.java
/** Return a random double drawn from a Gaussian distribution with mean 0 and variance 1. */ public synchronized double nextGaussian() { if (!haveNextGaussian) { double v1 = nextUniform(), v2 = nextUniform(); double x1, x2; x1 = Math.sqrt(-2 * Math.log(v1)) * Math.cos(2 * Math.PI * v2); x2 = Math.sqrt(-2 * Math.log(v1)) * Math.sin(2 * Math.PI * v2); nextGaussian = x2;/*from ww w. ja v a 2s. c o m*/ haveNextGaussian = true; return x1; } else { haveNextGaussian = false; return nextGaussian; } }
From source file:com.opengamma.analytics.math.TrigonometricFunctionUtils.java
public static ComplexNumber sinh(final ComplexNumber z) { Validate.notNull(z, "z"); return new ComplexNumber(Math.sinh(z.getReal()) * Math.cos(z.getImaginary()), Math.cosh(z.getReal()) * Math.sin(z.getImaginary())); }
From source file:com.nextbreakpoint.nextfractal.mandelbrot.core.Expression.java
public static double funcSin(double x) { return Math.sin(x); }
From source file:info.raack.appliancedetection.evaluation.model.appliance.SineWaveDevice.java
protected int powerDrawAtOnCycleTimestep(int totalSeconds, int secondIndex, int globalTimestep) { return (int) (Math.sin((2 * Math.PI) * (float) secondIndex / wavelength) * maxAmplitude) + (int) Math.ceil(maxAmplitude); }
From source file:com.alvermont.terraj.planet.project.HeightfieldGenerator.java
/** * Generate the heightfield data/*from ww w . j a va2 s. c om*/ */ public void generate() { final int width = getParameters().getProjectionParameters().getWidth(); final int height = getParameters().getProjectionParameters().getHeight(); final double lat = getParameters().getProjectionParameters().getLatitudeRadians(); final double lon = getParameters().getProjectionParameters().getLongitudeRadians(); final double scale = getParameters().getProjectionParameters().getScale(); heights = new int[width][height]; final double sla = Math.sin(lat); final double cla = Math.cos(lat); final double slo = Math.sin(lon); final double clo = Math.cos(lon); cacheParameters(); depth = (3 * ((int) (log2(scale * height)))) + 6; double x; double y; double z; double x1; double y1; double z1; for (int j = 0; j < height; ++j) { for (int i = 0; i < width; ++i) { x = ((2.0 * i) - width) / height / scale; y = ((2.0 * j) - height) / height / scale; if (((x * x) + (y * y)) > 1.0) { heights[i][j] = 0; } else { z = Math.sqrt(1.0 - (x * x) - (y * y)); x1 = (clo * x) + (slo * sla * y) + (slo * cla * z); y1 = (cla * y) - (sla * z); z1 = (-slo * x) + (clo * sla * y) + (clo * cla * z); final double heightValue = planet1(x1, y1, z1); heights[i][j] = (int) (10000000.0 * heightValue); } } } }