List of usage examples for java.lang Math sin
@HotSpotIntrinsicCandidate public static double sin(double a)
From source file:Main.java
/** * Metoda care calculeaza viteza cu care se deplaseaza intre 2 coordonate * date(Lat+long) intr-un interval de timp [time_1,time_2]. Calculam * distanta dintre cele doua coordonate folosind formula " Great-circle * distance" viteza = distanta transformata in m/diferenta dintre cei 2 * timpi primiti ca parametru// ww w. j a v a 2 s . c om */ public static double computeSpeed(double lat_1, double long_1, long time_1, double lat_2, double long_2, long time_2) { double speed; // speed->m/s double distanceKm; double distanceM; long time; double r = 6378.137; double e = (double) Math.acos( Math.sin(lat_1) * Math.sin(lat_2) + Math.cos(lat_1) * Math.cos(lat_2) * Math.cos(long_2 - long_1)); e = e / 180 * (double) Math.PI; distanceKm = e * r; distanceM = distanceKm * 1000; time = (time_2 - time_1) / 1000; speed = distanceM / time; return speed; }
From source file:Main.java
/** * Computes the distance in meters between two points on Earth. * * @param lat1 Latitude of the first point * @param lon1 Longitude of the first point * @param lat2 Latitude of the second point * @param lon2 Longitude of the second point * @return Distance between the two points in meters. *///from w w w . j av a 2 s . c o m public static double distance(double lat1, double lon1, double lat2, double lon2) { double lat1Rad = Math.toRadians(lat1); double lat2Rad = Math.toRadians(lat2); double deltaLonRad = Math.toRadians(lon2 - lon1); return Math.acos(Math.sin(lat1Rad) * Math.sin(lat2Rad) + Math.cos(lat1Rad) * Math.cos(lat2Rad) * Math.cos(deltaLonRad)) * EARTH_RADIUS_KM * 1000; }
From source file:Main.java
static double distanceFromPointOnArc(double dA, double dB, double dAB) { // In spherical trinagle ABC // a is length of arc BC, that is dB // b is length of arc AC, that is dA // c is length of arc AB, that is dAB // We rename parameters so following formulas are more clear: double a = dB; double b = dA; double c = dAB; // First, we calculate angles alpha and beta in spherical triangle ABC // and based on them we decide how to calculate the distance: if (Math.sin(b) * Math.sin(c) == 0.0 || Math.sin(c) * Math.sin(a) == 0.0) { // It probably means that one of distance is n*pi, which gives around 20000km for n = 1, // unlikely for Denmark, so we should be fine. return -1.0; }//from w w w . j a va2s . c o m double alpha = Math.acos((Math.cos(a) - Math.cos(b) * Math.cos(c)) / (Math.sin(b) * Math.sin(c))); double beta = Math.acos((Math.cos(b) - Math.cos(c) * Math.cos(a)) / (Math.sin(c) * Math.sin(a))); // It is possible that both sinuses are too small so we can get nan when dividing with them if (Double.isNaN(alpha) || Double.isNaN(beta)) { return -1.0; } // If alpha or beta are zero or pi, it means that C is on the same circle as arc AB, // we just need to figure out if it is between AB: if (alpha == 0.0 || beta == 0.0) { return (dA + dB > dAB) ? Math.min(dA, dB) : 0.0; } // If alpha is obtuse and beta is acute angle, then // distance is equal to dA: if (alpha > Math.PI / 2 && beta < Math.PI / 2) return -1; // Analogously, if beta is obtuse and alpha is acute angle, then // distance is equal to dB: if (beta > Math.PI / 2 && alpha < Math.PI / 2) return -1; // Again, unlikely, since it would render at least pi/2*EARTH_RADIUS_IN_METERS, which is too much. if (Math.cos(a) == 0.0) return -1; double x = Math.atan(-1.0 / Math.tan(c) + (Math.cos(b) / (Math.cos(a) * Math.sin(c)))); return x; }
From source file:Main.java
private static void findConstants(double[] n_p, double[] n_m, double[] d_p, double[] d_m, double[] bd_p, double[] bd_m, double std_dev) { double div = Math.sqrt(2 * 3.141593) * std_dev; double x0 = -1.783 / std_dev; double x1 = -1.723 / std_dev; double x2 = 0.6318 / std_dev; double x3 = 1.997 / std_dev; double x4 = 1.6803 / div; double x5 = 3.735 / div; double x6 = -0.6803 / div; double x7 = -0.2598 / div; int i;/*from w w w . ja v a2 s .co m*/ n_p[0] = x4 + x6; n_p[1] = (Math.exp(x1) * (x7 * Math.sin(x3) - (x6 + 2 * x4) * Math.cos(x3)) + Math.exp(x0) * (x5 * Math.sin(x2) - (2 * x6 + x4) * Math.cos(x2))); n_p[2] = (2 * Math.exp(x0 + x1) * ((x4 + x6) * Math.cos(x3) * Math.cos(x2) - x5 * Math.cos(x3) * Math.sin(x2) - x7 * Math.cos(x2) * Math.sin(x3)) + x6 * Math.exp(2 * x0) + x4 * Math.exp(2 * x1)); n_p[3] = (Math.exp(x1 + 2 * x0) * (x7 * Math.sin(x3) - x6 * Math.cos(x3)) + Math.exp(x0 + 2 * x1) * (x5 * Math.sin(x2) - x4 * Math.cos(x2))); n_p[4] = 0.0; d_p[0] = 0.0; d_p[1] = -2 * Math.exp(x1) * Math.cos(x3) - 2 * Math.exp(x0) * Math.cos(x2); d_p[2] = 4 * Math.cos(x3) * Math.cos(x2) * Math.exp(x0 + x1) + Math.exp(2 * x1) + Math.exp(2 * x0); d_p[3] = -2 * Math.cos(x2) * Math.exp(x0 + 2 * x1) - 2 * Math.cos(x3) * Math.exp(x1 + 2 * x0); d_p[4] = Math.exp(2 * x0 + 2 * x1); for (i = 0; i <= 4; i++) { d_m[i] = d_p[i]; } n_m[0] = 0.0; for (i = 1; i <= 4; i++) { n_m[i] = n_p[i] - d_p[i] * n_p[0]; } double sum_n_p, sum_n_m, sum_d; double a, b; sum_n_p = 0.0; sum_n_m = 0.0; sum_d = 0.0; for (i = 0; i <= 4; i++) { sum_n_p += n_p[i]; sum_n_m += n_m[i]; sum_d += d_p[i]; } a = sum_n_p / (1.0 + sum_d); b = sum_n_m / (1.0 + sum_d); for (i = 0; i <= 4; i++) { bd_p[i] = d_p[i] * a; bd_m[i] = d_m[i] * b; } }
From source file:Main.java
/** * Computes the distance in kilometers between two points on Earth. * * @param lat1 Latitude of the first point * @param lon1 Longitude of the first point * @param lat2 Latitude of the second point * @param lon2 Longitude of the second point * @return Distance between the two points in kilometers. *//* w w w . j a v a 2s . c o m*/ public static double distanceKm(double lat1, double lon1, double lat2, double lon2) { double lat1Rad = Math.toRadians(lat1); double lat2Rad = Math.toRadians(lat2); double deltaLonRad = Math.toRadians(lon2 - lon1); return Math.acos(Math.sin(lat1Rad) * Math.sin(lat2Rad) + Math.cos(lat1Rad) * Math.cos(lat2Rad) * Math.cos(deltaLonRad)) * EARTH_RADIUS_KM; }
From source file:Main.java
private static float getY(double angle, double radius) { return (float) (Math.sin(angle + Math.PI / 2) * radius); }
From source file:Main.java
private static byte generateBeep(int step, float freq, int samplingRate) { double phase = calcPhase(step, freq, samplingRate); return (byte) (128 * (Math.sin(phase) + Math.sin(2 * phase))); }
From source file:Main.java
private static byte generateSoft(int step, float freq, int samplingRate) { double phase = calcPhase(step, freq, samplingRate); return (byte) (128 * (Math.sin(phase))); }
From source file:Main.java
private static byte generateBase(int step, float freq, int samplingRate) { double phase = calcPhase(step, freq * 0.08f, samplingRate); return (byte) (128 * (Math.sin(phase))); }
From source file:Main.java
public static Point rotatePoint(Point point, Point centerPoint, float rotate) { float x = point.x; float y = point.y; float sinA = (float) Math.sin(Math.toRadians(rotate)); float cosA = (float) Math.cos(Math.toRadians(rotate)); float newX = centerPoint.x + (x - centerPoint.x) * cosA - (y - centerPoint.y) * sinA; float newY = centerPoint.y + (y - centerPoint.y) * cosA + (x - centerPoint.x) * sinA; return new Point((int) newX, (int) newY); }