Java tutorial
/** * Copyright (C) 2009 - present by OpenGamma Inc. and the OpenGamma group of companies * * Please see distribution for license. */ package com.opengamma.analytics.math; import static com.opengamma.analytics.math.number.ComplexNumber.I; import org.apache.commons.lang.Validate; import com.opengamma.analytics.math.number.ComplexNumber; /** * */ public class TrigonometricFunctionUtils { private static final ComplexNumber NEGATIVE_I = new ComplexNumber(0, -1); public static double acos(final double x) { return Math.acos(x); } /** * arccos - the inverse of cos * @param z A complex number * @return acos(z) */ public static ComplexNumber acos(final ComplexNumber z) { Validate.notNull(z, "z"); return ComplexMathUtils.multiply(NEGATIVE_I, ComplexMathUtils.log(ComplexMathUtils.add(z, ComplexMathUtils.sqrt(ComplexMathUtils.subtract(ComplexMathUtils.multiply(z, z), 1))))); } public static double acosh(final double x) { final double y = x * x - 1; Validate.isTrue(y >= 0, "|x|>=1.0 for real solution"); return Math.log(x + Math.sqrt(x * x - 1)); } public static ComplexNumber acosh(final ComplexNumber z) { Validate.notNull(z, "z"); return ComplexMathUtils.log(ComplexMathUtils.add(z, ComplexMathUtils.sqrt(ComplexMathUtils.subtract(ComplexMathUtils.multiply(z, z), 1)))); } public static double asin(final double x) { return Math.asin(x); } public static ComplexNumber asin(final ComplexNumber z) { Validate.notNull(z, "z"); return ComplexMathUtils.multiply(NEGATIVE_I, ComplexMathUtils.log(ComplexMathUtils.add(ComplexMathUtils.multiply(I, z), ComplexMathUtils.sqrt(ComplexMathUtils.subtract(1, ComplexMathUtils.multiply(z, z)))))); } public static double asinh(final double x) { return Math.log(x + Math.sqrt(x * x + 1)); } public static ComplexNumber asinh(final ComplexNumber z) { Validate.notNull(z, "z"); return ComplexMathUtils.log(ComplexMathUtils.add(z, ComplexMathUtils.sqrt(ComplexMathUtils.add(ComplexMathUtils.multiply(z, z), 1)))); } public static double atan(final double x) { return Math.atan(x); } public static ComplexNumber atan(final ComplexNumber z) { Validate.notNull(z, "z"); final ComplexNumber iZ = ComplexMathUtils.multiply(z, I); final ComplexNumber half = new ComplexNumber(0, 0.5); return ComplexMathUtils.multiply(half, ComplexMathUtils .log(ComplexMathUtils.divide(ComplexMathUtils.subtract(1, iZ), ComplexMathUtils.add(1, iZ)))); } public static double atanh(final double x) { return 0.5 * Math.log((1 + x) / (1 - x)); } //TODO R White 21/07/2011 not sure why this was used over the equivalent below // public static ComplexNumber atanh(final ComplexNumber z) { // Validate.notNull(z, "z"); // return ComplexMathUtils.log(ComplexMathUtils.divide(ComplexMathUtils.sqrt(ComplexMathUtils.subtract(1, ComplexMathUtils.multiply(z, z))), ComplexMathUtils.subtract(1, z))); // } public static ComplexNumber atanh(final ComplexNumber z) { Validate.notNull(z, "z"); return ComplexMathUtils.multiply(0.5, ComplexMathUtils .log(ComplexMathUtils.divide(ComplexMathUtils.add(1, z), ComplexMathUtils.subtract(1, z)))); } public static double cos(final double x) { return Math.cos(x); } public static ComplexNumber cos(final ComplexNumber z) { Validate.notNull(z, "z"); final double x = z.getReal(); final double y = z.getImaginary(); return new ComplexNumber(Math.cos(x) * Math.cosh(y), -Math.sin(x) * Math.sinh(y)); } public static double cosh(final double x) { return Math.cosh(x); } public static ComplexNumber cosh(final ComplexNumber z) { Validate.notNull(z, "z"); return new ComplexNumber(Math.cosh(z.getReal()) * Math.cos(z.getImaginary()), Math.sinh(z.getReal()) * Math.sin(z.getImaginary())); } public static double sin(final double x) { return Math.sin(x); } public static ComplexNumber sin(final ComplexNumber z) { Validate.notNull(z, "z"); final double x = z.getReal(); final double y = z.getImaginary(); return new ComplexNumber(Math.sin(x) * Math.cosh(y), Math.cos(x) * Math.sinh(y)); } public static double sinh(final double x) { return Math.sinh(x); } public static ComplexNumber sinh(final ComplexNumber z) { Validate.notNull(z, "z"); return new ComplexNumber(Math.sinh(z.getReal()) * Math.cos(z.getImaginary()), Math.cosh(z.getReal()) * Math.sin(z.getImaginary())); } public static double tan(final double x) { return Math.tan(x); } public static ComplexNumber tan(final ComplexNumber z) { final ComplexNumber b = ComplexMathUtils.exp(ComplexMathUtils.multiply(ComplexMathUtils.multiply(I, 2), z)); return ComplexMathUtils.divide(ComplexMathUtils.subtract(b, 1), ComplexMathUtils.multiply(I, ComplexMathUtils.add(b, 1))); } public static double tanh(final double x) { return Math.tanh(x); } public static ComplexNumber tanh(final ComplexNumber z) { final ComplexNumber z2 = ComplexMathUtils.exp(z); final ComplexNumber z3 = ComplexMathUtils.exp(ComplexMathUtils.multiply(z, -1)); return ComplexMathUtils.divide(ComplexMathUtils.subtract(z2, z3), ComplexMathUtils.add(z2, z3)); } }