List of usage examples for java.lang Math min
@HotSpotIntrinsicCandidate public static double min(double a, double b)
From source file:Main.java
static double distanceFromPointOnArc(double dA, double dB, double dAB) { // In spherical trinagle ABC // a is length of arc BC, that is dB // b is length of arc AC, that is dA // c is length of arc AB, that is dAB // We rename parameters so following formulas are more clear: double a = dB; double b = dA; double c = dAB; // First, we calculate angles alpha and beta in spherical triangle ABC // and based on them we decide how to calculate the distance: if (Math.sin(b) * Math.sin(c) == 0.0 || Math.sin(c) * Math.sin(a) == 0.0) { // It probably means that one of distance is n*pi, which gives around 20000km for n = 1, // unlikely for Denmark, so we should be fine. return -1.0; }//w w w. j a va 2s . co m double alpha = Math.acos((Math.cos(a) - Math.cos(b) * Math.cos(c)) / (Math.sin(b) * Math.sin(c))); double beta = Math.acos((Math.cos(b) - Math.cos(c) * Math.cos(a)) / (Math.sin(c) * Math.sin(a))); // It is possible that both sinuses are too small so we can get nan when dividing with them if (Double.isNaN(alpha) || Double.isNaN(beta)) { return -1.0; } // If alpha or beta are zero or pi, it means that C is on the same circle as arc AB, // we just need to figure out if it is between AB: if (alpha == 0.0 || beta == 0.0) { return (dA + dB > dAB) ? Math.min(dA, dB) : 0.0; } // If alpha is obtuse and beta is acute angle, then // distance is equal to dA: if (alpha > Math.PI / 2 && beta < Math.PI / 2) return -1; // Analogously, if beta is obtuse and alpha is acute angle, then // distance is equal to dB: if (beta > Math.PI / 2 && alpha < Math.PI / 2) return -1; // Again, unlikely, since it would render at least pi/2*EARTH_RADIUS_IN_METERS, which is too much. if (Math.cos(a) == 0.0) return -1; double x = Math.atan(-1.0 / Math.tan(c) + (Math.cos(b) / (Math.cos(a) * Math.sin(c)))); return x; }
From source file:Main.java
public static long[] copyOf(long[] original, int newLength) { long[] copy = new long[newLength]; System.arraycopy(original, 0, copy, 0, Math.min(original.length, newLength)); return copy;//from w w w. j a va2s . c o m }
From source file:com.maya.portAuthority.googleMaps.LocationTracker.java
/** * Case 1: Request returns list of Coordinates * Proceed to Step 2/* w w w . j a va2 s .co m*/ * * Case 2: Unable to understand source location * Ask user to try again. * * @param json returned by striking the Google maps API * @param limit set limit to the number of places returned by the API * @return * @throws JSONException */ public static List<Location> getLatLngDetails(JSONObject json, int limit) throws JSONException, InvalidInputException { List<Location> output = new ArrayList<>(); JSONArray results = json.getJSONArray("results"); log.debug("JSON Results Size={}", results.length()); if (results.length() == 0) { throw new InvalidInputException("No results from JSON", "I did not understand the source location"); } int numResultsToReturn = Math.min(limit, results.length()); JSONObject result; JSONObject location; for (int i = 0; i < numResultsToReturn; i++) { result = results.getJSONObject(i); location = result.getJSONObject("geometry").getJSONObject("location"); Location c = new Location(result.getString("name"), location.getDouble("lat"), location.getDouble("lng"), result.getString("formatted_address"), makeList(result.getJSONArray("types"))); output.add(c); } return output; }
From source file:annis.utils.Utils.java
public static String min(List<Long> runtimeList) { long min = Long.MAX_VALUE; for (long value : runtimeList) { min = Math.min(min, value); }/*from ww w .j ava2 s. c o m*/ return String.valueOf(min); }
From source file:Main.java
private static int computeInitialSampleSize(BitmapFactory.Options options, int minSideLength, int maxNumOfPixels) { double w = options.outWidth; double h = options.outHeight; int lowerBound = (maxNumOfPixels == -1) ? 1 : (int) Math.ceil(Math.sqrt(w * h / maxNumOfPixels)); int upperBound = (minSideLength == -1) ? 128 : (int) Math.min(Math.floor(w / minSideLength), Math.floor(h / minSideLength)); if (upperBound < lowerBound) { // return the larger one when there is no overlapping zone. return lowerBound; }//from w w w .j a va 2s . c o m if ((maxNumOfPixels == -1) && (minSideLength == -1)) { return 1; } else if (minSideLength == -1) { return lowerBound; } else { return upperBound; } }
From source file:Main.java
public static void setBestExposure(Camera.Parameters parameters, boolean lightOn) { int minExposure = parameters.getMinExposureCompensation(); int maxExposure = parameters.getMaxExposureCompensation(); float step = parameters.getExposureCompensationStep(); if ((minExposure != 0 || maxExposure != 0) && step > 0.0f) { // Set low when light is on float targetCompensation = lightOn ? MIN_EXPOSURE_COMPENSATION : MAX_EXPOSURE_COMPENSATION; int compensationSteps = Math.round(targetCompensation / step); float actualCompensation = step * compensationSteps; // Clamp value: compensationSteps = Math.max(Math.min(compensationSteps, maxExposure), minExposure); if (parameters.getExposureCompensation() == compensationSteps) { Log.i(TAG,/*from w ww .jav a 2 s. co m*/ "Exposure compensation already set to " + compensationSteps + " / " + actualCompensation); } else { Log.i(TAG, "Setting exposure compensation to " + compensationSteps + " / " + actualCompensation); parameters.setExposureCompensation(compensationSteps); } } else { Log.i(TAG, "Camera does not support exposure compensation"); } }
From source file:Main.java
/** * Transform source Bitmap to targeted width and height. *//*from w w w . j ava 2s .c o m*/ private static Bitmap transform(Matrix scaler, Bitmap source, int targetWidth, int targetHeight, int options) { boolean scaleUp = (options & OPTIONS_SCALE_UP) != 0; boolean recycle = (options & OPTIONS_RECYCLE_INPUT) != 0; int deltaX = source.getWidth() - targetWidth; int deltaY = source.getHeight() - targetHeight; if (!scaleUp && (deltaX < 0 || deltaY < 0)) { /* * In this case the bitmap is smaller, at least in one dimension, * than the target. Transform it by placing as much of the image * as possible into the target and leaving the top/bottom or * left/right (or both) black. */ Bitmap b2 = Bitmap.createBitmap(targetWidth, targetHeight, Bitmap.Config.ARGB_8888); Canvas c = new Canvas(b2); int deltaXHalf = Math.max(0, deltaX / 2); int deltaYHalf = Math.max(0, deltaY / 2); Rect src = new Rect(deltaXHalf, deltaYHalf, deltaXHalf + Math.min(targetWidth, source.getWidth()), deltaYHalf + Math.min(targetHeight, source.getHeight())); int dstX = (targetWidth - src.width()) / 2; int dstY = (targetHeight - src.height()) / 2; Rect dst = new Rect(dstX, dstY, targetWidth - dstX, targetHeight - dstY); c.drawBitmap(source, src, dst, null); if (recycle) { source.recycle(); } c.setBitmap(null); return b2; } float bitmapWidthF = source.getWidth(); float bitmapHeightF = source.getHeight(); float bitmapAspect = bitmapWidthF / bitmapHeightF; float viewAspect = (float) targetWidth / targetHeight; if (bitmapAspect > viewAspect) { float scale = targetHeight / bitmapHeightF; if (scale < .9F || scale > 1F) { scaler.setScale(scale, scale); } else { scaler = null; } } else { float scale = targetWidth / bitmapWidthF; if (scale < .9F || scale > 1F) { scaler.setScale(scale, scale); } else { scaler = null; } } Bitmap b1; if (scaler != null) { // this is used for minithumb and crop, so we want to filter here. b1 = Bitmap.createBitmap(source, 0, 0, source.getWidth(), source.getHeight(), scaler, true); } else { b1 = source; } if (recycle && b1 != source) { source.recycle(); } int dx1 = Math.max(0, b1.getWidth() - targetWidth); int dy1 = Math.max(0, b1.getHeight() - targetHeight); Bitmap b2 = Bitmap.createBitmap(b1, dx1 / 2, 0, targetWidth, targetHeight); if (b2 != b1) { if (recycle || b1 != source) { b1.recycle(); } } return b2; }
From source file:Main.java
/** * Transform source Bitmap to targeted width and height. *///from w ww . j av a 2s. c om private static Bitmap transform(Matrix scaler, Bitmap source, int targetWidth, int targetHeight, int options) { boolean scaleUp = (options & OPTIONS_SCALE_UP) != 0; boolean recycle = (options & OPTIONS_RECYCLE_INPUT) != 0; int deltaX = source.getWidth() - targetWidth; int deltaY = source.getHeight() - targetHeight; if (!scaleUp && (deltaX < 0 || deltaY < 0)) { /* * In this case the bitmap is smaller, at least in one dimension, * than the target. Transform it by placing as much of the image as * possible into the target and leaving the top/bottom or left/right * (or both) black. */ Bitmap b2 = Bitmap.createBitmap(targetWidth, targetHeight, Bitmap.Config.ARGB_8888); Canvas c = new Canvas(b2); int deltaXHalf = Math.max(0, deltaX / 2); int deltaYHalf = Math.max(0, deltaY / 2); Rect src = new Rect(deltaXHalf, deltaYHalf, deltaXHalf + Math.min(targetWidth, source.getWidth()), deltaYHalf + Math.min(targetHeight, source.getHeight())); int dstX = (targetWidth - src.width()) / 2; int dstY = (targetHeight - src.height()) / 2; Rect dst = new Rect(dstX, dstY, targetWidth - dstX, targetHeight - dstY); c.drawBitmap(source, src, dst, null); if (recycle) { source.recycle(); } c.setBitmap(null); return b2; } float bitmapWidthF = source.getWidth(); float bitmapHeightF = source.getHeight(); float bitmapAspect = bitmapWidthF / bitmapHeightF; float viewAspect = (float) targetWidth / targetHeight; if (bitmapAspect > viewAspect) { float scale = targetHeight / bitmapHeightF; if (scale < .9F || scale > 1F) { scaler.setScale(scale, scale); } else { scaler = null; } } else { float scale = targetWidth / bitmapWidthF; if (scale < .9F || scale > 1F) { scaler.setScale(scale, scale); } else { scaler = null; } } Bitmap b1; if (scaler != null) { // this is used for minithumb and crop, so we want to filter here. b1 = Bitmap.createBitmap(source, 0, 0, source.getWidth(), source.getHeight(), scaler, true); } else { b1 = source; } if (recycle && b1 != source) { source.recycle(); } int dx1 = Math.max(0, b1.getWidth() - targetWidth); int dy1 = Math.max(0, b1.getHeight() - targetHeight); Bitmap b2 = Bitmap.createBitmap(b1, dx1 / 2, dy1 / 2, targetWidth, targetHeight); if (b2 != b1) { if (recycle || b1 != source) { b1.recycle(); } } return b2; }
From source file:Main.java
private static int computeInitialSampleSize(BitmapFactory.Options options, int minSideLength, int maxNumOfPixels) { double w = options.outWidth; double h = options.outHeight; final int UNCONSTRAINED = -1; int lowerBound = (maxNumOfPixels == UNCONSTRAINED) ? 1 : (int) Math.ceil(Math.sqrt(w * h / maxNumOfPixels)); int upperBound = (minSideLength == UNCONSTRAINED) ? 128 : (int) Math.min(Math.floor(w / minSideLength), Math.floor(h / minSideLength)); if (upperBound < lowerBound) { // return the larger one when there is no overlapping zone. return lowerBound; }/* w ww . j ava 2s .c om*/ if ((maxNumOfPixels == UNCONSTRAINED) && (minSideLength == UNCONSTRAINED)) { return 1; } else if (minSideLength == UNCONSTRAINED) { return lowerBound; } else { return upperBound; } }
From source file:Main.java
/** * Methode permettant de splitter une liste en un certain nombre de sous-listes * @param list Liste originale/*from ww w. j a v a 2s . c o m*/ * @param subListNumber Nombre de sous-listes souhaitees * @return Liste de sous-liste splittee */ public static <T> List<List<T>> splitList(List<T> list, int subListNumber) { // Liste a retourner List<List<T>> splitted = new ArrayList<List<T>>(); // Si la liste est vide if (list == null || list.size() == 0) return splitted; // Taille de la liste int listSize = list.size(); // Nombre d'elements de la liste int subSize = Math.max(listSize / (subListNumber - 1), 1); // Parcours de la liste a splitter for (int i = 0; i < listSize; i += subSize) { // Ajout de la sous-liste splitted.add(new ArrayList<T>(list.subList(i, Math.min(listSize, i + subSize)))); } // On retourne la liste des sous-listes return splitted; }