Back to project page android-opencv-template.
The source code is released under:
MIT License
If you think the Android project android-opencv-template listed in this page is inappropriate, such as containing malicious code/tools or violating the copyright, please email info at java2s dot com, thanks.
// // This file is auto-generated. Please don't modify it! //// w ww.j av a 2 s .c o m package org.opencv.objdetect; import org.opencv.core.Mat; import org.opencv.core.MatOfInt; import org.opencv.core.MatOfRect; public class Objdetect { public static final int CASCADE_DO_CANNY_PRUNING = 1, CASCADE_SCALE_IMAGE = 2, CASCADE_FIND_BIGGEST_OBJECT = 4, CASCADE_DO_ROUGH_SEARCH = 8; // // C++: void drawDataMatrixCodes(Mat& image, vector_string codes, Mat corners) // // Unknown type 'vector_string' (I), skipping the function // // C++: void findDataMatrix(Mat image, vector_string& codes, Mat& corners = Mat(), vector_Mat& dmtx = vector_Mat()) // // Unknown type 'vector_string' (O), skipping the function // // C++: void groupRectangles(vector_Rect& rectList, vector_int& weights, int groupThreshold, double eps = 0.2) // /** * <p>Groups the object candidate rectangles.</p> * * <p>The function is a wrapper for the generic function "partition". It clusters * all the input rectangles using the rectangle equivalence criteria that * combines rectangles with similar sizes and similar locations. The similarity * is defined by <code>eps</code>. When <code>eps=0</code>, no clustering is * done at all. If <em>eps-> +inf</em>, all the rectangles are put in one * cluster. Then, the small clusters containing less than or equal to * <code>groupThreshold</code> rectangles are rejected. In each other cluster, * the average rectangle is computed and put into the output rectangle list.</p> * * @param rectList Input/output vector of rectangles. Output vector includes * retained and grouped rectangles. (The Python list is not modified in place.) * @param weights a weights * @param groupThreshold Minimum possible number of rectangles minus 1. The * threshold is used in a group of rectangles to retain it. * @param eps Relative difference between sides of the rectangles to merge them * into a group. * * @see <a href="http://docs.opencv.org/modules/objdetect/doc/cascade_classification.html#grouprectangles">org.opencv.objdetect.Objdetect.groupRectangles</a> */ public static void groupRectangles(MatOfRect rectList, MatOfInt weights, int groupThreshold, double eps) { Mat rectList_mat = rectList; Mat weights_mat = weights; groupRectangles_0(rectList_mat.nativeObj, weights_mat.nativeObj, groupThreshold, eps); return; } /** * <p>Groups the object candidate rectangles.</p> * * <p>The function is a wrapper for the generic function "partition". It clusters * all the input rectangles using the rectangle equivalence criteria that * combines rectangles with similar sizes and similar locations. The similarity * is defined by <code>eps</code>. When <code>eps=0</code>, no clustering is * done at all. If <em>eps-> +inf</em>, all the rectangles are put in one * cluster. Then, the small clusters containing less than or equal to * <code>groupThreshold</code> rectangles are rejected. In each other cluster, * the average rectangle is computed and put into the output rectangle list.</p> * * @param rectList Input/output vector of rectangles. Output vector includes * retained and grouped rectangles. (The Python list is not modified in place.) * @param weights a weights * @param groupThreshold Minimum possible number of rectangles minus 1. The * threshold is used in a group of rectangles to retain it. * * @see <a href="http://docs.opencv.org/modules/objdetect/doc/cascade_classification.html#grouprectangles">org.opencv.objdetect.Objdetect.groupRectangles</a> */ public static void groupRectangles(MatOfRect rectList, MatOfInt weights, int groupThreshold) { Mat rectList_mat = rectList; Mat weights_mat = weights; groupRectangles_1(rectList_mat.nativeObj, weights_mat.nativeObj, groupThreshold); return; } // C++: void groupRectangles(vector_Rect& rectList, vector_int& weights, int groupThreshold, double eps = 0.2) private static native void groupRectangles_0(long rectList_mat_nativeObj, long weights_mat_nativeObj, int groupThreshold, double eps); private static native void groupRectangles_1(long rectList_mat_nativeObj, long weights_mat_nativeObj, int groupThreshold); }