Android Open Source - android-opencv-template Mat






From Project

Back to project page android-opencv-template.

License

The source code is released under:

MIT License

If you think the Android project android-opencv-template listed in this page is inappropriate, such as containing malicious code/tools or violating the copyright, please email info at java2s dot com, thanks.

Java Source Code

package org.opencv.core;
/*from  w  w  w . j  a va2s  .  c om*/
// C++: class Mat
/**
 * <p>OpenCV C++ n-dimensional dense array class</p>
 *
 * <p>class CV_EXPORTS Mat <code></p>
 *
 * <p>// C++ code:</p>
 *
 *
 * <p>public:</p>
 *
 * <p>//... a lot of methods......</p>
 *
 * <p>/ *! includes several bit-fields:</p>
 *
 * <p>- the magic signature</p>
 *
 * <p>- continuity flag</p>
 *
 * <p>- depth</p>
 *
 * <p>- number of channels</p>
 * <ul>
 *   <li> /
 * </ul>
 *
 * <p>int flags;</p>
 *
 * <p>//! the array dimensionality, >= 2</p>
 *
 * <p>int dims;</p>
 *
 * <p>//! the number of rows and columns or (-1, -1) when the array has more than 2
 * dimensions</p>
 *
 * <p>int rows, cols;</p>
 *
 * <p>//! pointer to the data</p>
 *
 * <p>uchar* data;</p>
 *
 * <p>//! pointer to the reference counter;</p>
 *
 * <p>// when array points to user-allocated data, the pointer is NULL</p>
 *
 * <p>int* refcount;</p>
 *
 * <p>// other members...</p>
 *
 * <p>};</p>
 *
 * <p>The class <code>Mat</code> represents an n-dimensional dense numerical
 * single-channel or multi-channel array. It can be used to store real or
 * complex-valued vectors and matrices, grayscale or color images, voxel
 * volumes, vector fields, point clouds, tensors, histograms (though, very
 * high-dimensional histograms may be better stored in a <code>SparseMat</code>).
 * The data layout of the array </code></p>
 *
 * <p><em>M</em> is defined by the array <code>M.step[]</code>, so that the address
 * of element <em>(i_0,...,i_(M.dims-1))</em>, where <em>0 <= i_k&ltM.size[k]</em>,
 * is computed as:</p>
 *
 * <p><em>addr(M_(i_0,...,i_(M.dims-1))) = M.data + M.step[0]*i_0 + M.step[1]*i_1
 * +... + M.step[M.dims-1]*i_(M.dims-1)</em></p>
 *
 * <p>In case of a 2-dimensional array, the above formula is reduced to:</p>
 *
 * <p><em>addr(M_(i,j)) = M.data + M.step[0]*i + M.step[1]*j</em></p>
 *
 * <p>Note that <code>M.step[i] >= M.step[i+1]</code> (in fact, <code>M.step[i] >=
 * M.step[i+1]*M.size[i+1]</code>). This means that 2-dimensional matrices are
 * stored row-by-row, 3-dimensional matrices are stored plane-by-plane, and so
 * on. <code>M.step[M.dims-1]</code> is minimal and always equal to the element
 * size <code>M.elemSize()</code>.</p>
 *
 * <p>So, the data layout in <code>Mat</code> is fully compatible with
 * <code>CvMat</code>, <code>IplImage</code>, and <code>CvMatND</code> types
 * from OpenCV 1.x. It is also compatible with the majority of dense array types
 * from the standard toolkits and SDKs, such as Numpy (ndarray), Win32
 * (independent device bitmaps), and others, that is, with any array that uses
 * *steps* (or *strides*) to compute the position of a pixel. Due to this
 * compatibility, it is possible to make a <code>Mat</code> header for
 * user-allocated data and process it in-place using OpenCV functions.</p>
 *
 * <p>There are many different ways to create a <code>Mat</code> object. The most
 * popular options are listed below:</p>
 * <ul>
 *   <li> Use the <code>create(nrows, ncols, type)</code> method or the similar
 * <code>Mat(nrows, ncols, type[, fillValue])</code> constructor. A new array of
 * the specified size and type is allocated. <code>type</code> has the same
 * meaning as in the <code>cvCreateMat</code> method.
 * </ul>
 * <p>For example, <code>CV_8UC1</code> means a 8-bit single-channel array,
 * <code>CV_32FC2</code> means a 2-channel (complex) floating-point array, and
 * so on.</p>
 *
 * <p><code></p>
 *
 * <p>// C++ code:</p>
 *
 * <p>// make a 7x7 complex matrix filled with 1+3j.</p>
 *
 * <p>Mat M(7,7,CV_32FC2,Scalar(1,3));</p>
 *
 * <p>// and now turn M to a 100x60 15-channel 8-bit matrix.</p>
 *
 * <p>// The old content will be deallocated</p>
 *
 * <p>M.create(100,60,CV_8UC(15));</p>
 *
 * <p></code></p>
 *
 * <p>As noted in the introduction to this chapter, <code>create()</code> allocates
 * only a new array when the shape or type of the current array are different
 * from the specified ones.</p>
 * <ul>
 *   <li> Create a multi-dimensional array:
 * </ul>
 *
 * <p><code></p>
 *
 * <p>// C++ code:</p>
 *
 * <p>// create a 100x100x100 8-bit array</p>
 *
 * <p>int sz[] = {100, 100, 100};</p>
 *
 * <p>Mat bigCube(3, sz, CV_8U, Scalar.all(0));</p>
 *
 * <p></code></p>
 *
 * <p>It passes the number of dimensions =1 to the <code>Mat</code> constructor but
 * the created array will be 2-dimensional with the number of columns set to 1.
 * So, <code>Mat.dims</code> is always >= 2 (can also be 0 when the array is
 * empty).</p>
 * <ul>
 *   <li> Use a copy constructor or assignment operator where there can be an
 * array or expression on the right side (see below). As noted in the
 * introduction, the array assignment is an O(1) operation because it only
 * copies the header and increases the reference counter. The <code>Mat.clone()</code>
 * method can be used to get a full (deep) copy of the array when you need it.
 *   <li> Construct a header for a part of another array. It can be a single
 * row, single column, several rows, several columns, rectangular region in the
 * array (called a *minor* in algebra) or a diagonal. Such operations are also
 * O(1) because the new header references the same data. You can actually modify
 * a part of the array using this feature, for example:
 * </ul>
 *
 * <p><code></p>
 *
 * <p>// C++ code:</p>
 *
 * <p>// add the 5-th row, multiplied by 3 to the 3rd row</p>
 *
 * <p>M.row(3) = M.row(3) + M.row(5)*3;</p>
 *
 * <p>// now copy the 7-th column to the 1-st column</p>
 *
 * <p>// M.col(1) = M.col(7); // this will not work</p>
 *
 * <p>Mat M1 = M.col(1);</p>
 *
 * <p>M.col(7).copyTo(M1);</p>
 *
 * <p>// create a new 320x240 image</p>
 *
 * <p>Mat img(Size(320,240),CV_8UC3);</p>
 *
 * <p>// select a ROI</p>
 *
 * <p>Mat roi(img, Rect(10,10,100,100));</p>
 *
 * <p>// fill the ROI with (0,255,0) (which is green in RGB space);</p>
 *
 * <p>// the original 320x240 image will be modified</p>
 *
 * <p>roi = Scalar(0,255,0);</p>
 *
 * <p></code></p>
 *
 * <p>Due to the additional <code>datastart</code> and <code>dataend</code>
 * members, it is possible to compute a relative sub-array position in the main
 * *container* array using <code>locateROI()</code>:</p>
 *
 * <p><code></p>
 *
 * <p>// C++ code:</p>
 *
 * <p>Mat A = Mat.eye(10, 10, CV_32S);</p>
 *
 * <p>// extracts A columns, 1 (inclusive) to 3 (exclusive).</p>
 *
 * <p>Mat B = A(Range.all(), Range(1, 3));</p>
 *
 * <p>// extracts B rows, 5 (inclusive) to 9 (exclusive).</p>
 *
 * <p>// that is, C ~ A(Range(5, 9), Range(1, 3))</p>
 *
 * <p>Mat C = B(Range(5, 9), Range.all());</p>
 *
 * <p>Size size; Point ofs;</p>
 *
 * <p>C.locateROI(size, ofs);</p>
 *
 * <p>// size will be (width=10,height=10) and the ofs will be (x=1, y=5)</p>
 *
 * <p></code></p>
 *
 * <p>As in case of whole matrices, if you need a deep copy, use the
 * <code>clone()</code> method of the extracted sub-matrices.</p>
 * <ul>
 *   <li> Make a header for user-allocated data. It can be useful to do the
 * following:
 *   <li> Process "foreign" data using OpenCV (for example, when you implement a
 * DirectShow* filter or a processing module for <code>gstreamer</code>, and so
 * on). For example:
 * </ul>
 *
 * <p><code></p>
 *
 * <p>// C++ code:</p>
 *
 * <p>void process_video_frame(const unsigned char* pixels,</p>
 *
 * <p>int width, int height, int step)</p>
 *
 *
 * <p>Mat img(height, width, CV_8UC3, pixels, step);</p>
 *
 * <p>GaussianBlur(img, img, Size(7,7), 1.5, 1.5);</p>
 *
 *
 * <p></code></p>
 * <ul>
 *   <li> Quickly initialize small matrices and/or get a super-fast element
 * access.
 * </ul>
 *
 * <p><code></p>
 *
 * <p>// C++ code:</p>
 *
 * <p>double m[3][3] = {{a, b, c}, {d, e, f}, {g, h, i}};</p>
 *
 * <p>Mat M = Mat(3, 3, CV_64F, m).inv();</p>
 *
 * <p></code></p>
 *
 * <p>Partial yet very common cases of this *user-allocated data* case are
 * conversions from <code>CvMat</code> and <code>IplImage</code> to
 * <code>Mat</code>. For this purpose, there are special constructors taking
 * pointers to <code>CvMat</code> or <code>IplImage</code> and the optional flag
 * indicating whether to copy the data or not.</p>
 *
 * <p>Backward conversion from <code>Mat</code> to <code>CvMat</code> or
 * <code>IplImage</code> is provided via cast operators <code>Mat.operator
 * CvMat() const</code> and <code>Mat.operator IplImage()</code>. The operators
 * do NOT copy the data.</p>
 *
 * <p><code></p>
 *
 * <p>// C++ code:</p>
 *
 * <p>IplImage* img = cvLoadImage("greatwave.jpg", 1);</p>
 *
 * <p>Mat mtx(img); // convert IplImage* -> Mat</p>
 *
 * <p>CvMat oldmat = mtx; // convert Mat -> CvMat</p>
 *
 * <p>CV_Assert(oldmat.cols == img->width && oldmat.rows == img->height &&</p>
 *
 * <p>oldmat.data.ptr == (uchar*)img->imageData && oldmat.step == img->widthStep);</p>
 *
 * <p></code></p>
 * <ul>
 *   <li> Use MATLAB-style array initializers, <code>zeros(), ones(),
 * eye()</code>, for example:
 * </ul>
 *
 * <p><code></p>
 *
 * <p>// C++ code:</p>
 *
 * <p>// create a double-precision identity martix and add it to M.</p>
 *
 * <p>M += Mat.eye(M.rows, M.cols, CV_64F);</p>
 *
 * <p></code></p>
 * <ul>
 *   <li> Use a comma-separated initializer:
 * </ul>
 *
 * <p><code></p>
 *
 * <p>// C++ code:</p>
 *
 * <p>// create a 3x3 double-precision identity matrix</p>
 *
 * <p>Mat M = (Mat_<double>(3,3) << 1, 0, 0, 0, 1, 0, 0, 0, 1);</p>
 *
 * <p></code></p>
 *
 * <p>With this approach, you first call a constructor of the "Mat_" class with the
 * proper parameters, and then you just put <code><<</code> operator followed by
 * comma-separated values that can be constants, variables, expressions, and so
 * on. Also, note the extra parentheses required to avoid compilation errors.</p>
 *
 * <p>Once the array is created, it is automatically managed via a
 * reference-counting mechanism. If the array header is built on top of
 * user-allocated data, you should handle the data by yourself.
 * The array data is deallocated when no one points to it. If you want to
 * release the data pointed by a array header before the array destructor is
 * called, use <code>Mat.release()</code>.</p>
 *
 * <p>The next important thing to learn about the array class is element access.
 * This manual already described how to compute an address of each array
 * element. Normally, you are not required to use the formula directly in the
 * code. If you know the array element type (which can be retrieved using the
 * method <code>Mat.type()</code>), you can access the element<em>M_(ij)</em>
 * of a 2-dimensional array as: <code></p>
 *
 * <p>// C++ code:</p>
 *
 * <p>M.at<double>(i,j) += 1.f;</p>
 *
 * <p>assuming that M is a double-precision floating-point array. There are several
 * variants of the method <code>at</code> for a different number of dimensions.
 * </code></p>
 *
 * <p>If you need to process a whole row of a 2D array, the most efficient way is
 * to get the pointer to the row first, and then just use the plain C operator
 * <code>[]</code> : <code></p>
 *
 * <p>// C++ code:</p>
 *
 * <p>// compute sum of positive matrix elements</p>
 *
 * <p>// (assuming that M isa double-precision matrix)</p>
 *
 * <p>double sum=0;</p>
 *
 * <p>for(int i = 0; i < M.rows; i++)</p>
 *
 *
 * <p>const double* Mi = M.ptr<double>(i);</p>
 *
 * <p>for(int j = 0; j < M.cols; j++)</p>
 *
 * <p>sum += std.max(Mi[j], 0.);</p>
 *
 *
 * <p>Some operations, like the one above, do not actually depend on the array
 * shape. They just process elements of an array one by one (or elements from
 * multiple arrays that have the same coordinates, for example, array addition).
 * Such operations are called *element-wise*. It makes sense to check whether
 * all the input/output arrays are continuous, namely, have no gaps at the end
 * of each row. If yes, process them as a long single row:</p>
 *
 * <p>// compute the sum of positive matrix elements, optimized variant</p>
 *
 * <p>double sum=0;</p>
 *
 * <p>int cols = M.cols, rows = M.rows;</p>
 *
 * <p>if(M.isContinuous())</p>
 *
 *
 * <p>cols *= rows;</p>
 *
 * <p>rows = 1;</p>
 *
 *
 * <p>for(int i = 0; i < rows; i++)</p>
 *
 *
 * <p>const double* Mi = M.ptr<double>(i);</p>
 *
 * <p>for(int j = 0; j < cols; j++)</p>
 *
 * <p>sum += std.max(Mi[j], 0.);</p>
 *
 *
 * <p>In case of the continuous matrix, the outer loop body is executed just once.
 * So, the overhead is smaller, which is especially noticeable in case of small
 * matrices.
 * </code></p>
 *
 * <p>Finally, there are STL-style iterators that are smart enough to skip gaps
 * between successive rows: <code></p>
 *
 * <p>// C++ code:</p>
 *
 * <p>// compute sum of positive matrix elements, iterator-based variant</p>
 *
 * <p>double sum=0;</p>
 *
 * <p>MatConstIterator_<double> it = M.begin<double>(), it_end = M.end<double>();</p>
 *
 * <p>for(; it != it_end; ++it)</p>
 *
 * <p>sum += std.max(*it, 0.);</p>
 *
 * <p>The matrix iterators are random-access iterators, so they can be passed to
 * any STL algorithm, including <code>std.sort()</code>.
 * </code></p>
 *
 * <p>Note:</p>
 * <ul>
 *   <li> An example demonstrating the serial out capabilities of cv.Mat can be
 * found at opencv_source_code/samples/cpp/cout_mat.cpp
 * </ul>
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat">org.opencv.core.Mat</a>
 */
public class Mat {

    public final long nativeObj;

    public Mat(long addr)
    {
        if (addr == 0)
            throw new java.lang.UnsupportedOperationException("Native object address is NULL");
        nativeObj = addr;
    }

    //
    // C++: Mat::Mat()
    //

/**
 * <p>Various Mat constructors</p>
 *
 * <p>These are various constructors that form a matrix. As noted in the
 * "AutomaticAllocation", often the default constructor is enough, and the
 * proper matrix will be allocated by an OpenCV function. The constructed matrix
 * can further be assigned to another matrix or matrix expression or can be
 * allocated with "Mat.create". In the former case, the old content is
 * de-referenced.</p>
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-mat">org.opencv.core.Mat.Mat</a>
 */
    public Mat()
    {

        nativeObj = n_Mat();

        return;
    }

    //
    // C++: Mat::Mat(int rows, int cols, int type)
    //

/**
 * <p>Various Mat constructors</p>
 *
 * <p>These are various constructors that form a matrix. As noted in the
 * "AutomaticAllocation", often the default constructor is enough, and the
 * proper matrix will be allocated by an OpenCV function. The constructed matrix
 * can further be assigned to another matrix or matrix expression or can be
 * allocated with "Mat.create". In the former case, the old content is
 * de-referenced.</p>
 *
 * @param rows Number of rows in a 2D array.
 * @param cols Number of columns in a 2D array.
 * @param type Array type. Use <code>CV_8UC1,..., CV_64FC4</code> to create 1-4
 * channel matrices, or <code>CV_8UC(n),..., CV_64FC(n)</code> to create
 * multi-channel (up to <code>CV_CN_MAX</code> channels) matrices.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-mat">org.opencv.core.Mat.Mat</a>
 */
    public Mat(int rows, int cols, int type)
    {

        nativeObj = n_Mat(rows, cols, type);

        return;
    }

    //
    // C++: Mat::Mat(Size size, int type)
    //

/**
 * <p>Various Mat constructors</p>
 *
 * <p>These are various constructors that form a matrix. As noted in the
 * "AutomaticAllocation", often the default constructor is enough, and the
 * proper matrix will be allocated by an OpenCV function. The constructed matrix
 * can further be assigned to another matrix or matrix expression or can be
 * allocated with "Mat.create". In the former case, the old content is
 * de-referenced.</p>
 *
 * @param size 2D array size: <code>Size(cols, rows)</code>. In the
 * <code>Size()</code> constructor, the number of rows and the number of columns
 * go in the reverse order.
 * @param type Array type. Use <code>CV_8UC1,..., CV_64FC4</code> to create 1-4
 * channel matrices, or <code>CV_8UC(n),..., CV_64FC(n)</code> to create
 * multi-channel (up to <code>CV_CN_MAX</code> channels) matrices.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-mat">org.opencv.core.Mat.Mat</a>
 */
    public Mat(Size size, int type)
    {

        nativeObj = n_Mat(size.width, size.height, type);

        return;
    }

    //
    // C++: Mat::Mat(int rows, int cols, int type, Scalar s)
    //

/**
 * <p>Various Mat constructors</p>
 *
 * <p>These are various constructors that form a matrix. As noted in the
 * "AutomaticAllocation", often the default constructor is enough, and the
 * proper matrix will be allocated by an OpenCV function. The constructed matrix
 * can further be assigned to another matrix or matrix expression or can be
 * allocated with "Mat.create". In the former case, the old content is
 * de-referenced.</p>
 *
 * @param rows Number of rows in a 2D array.
 * @param cols Number of columns in a 2D array.
 * @param type Array type. Use <code>CV_8UC1,..., CV_64FC4</code> to create 1-4
 * channel matrices, or <code>CV_8UC(n),..., CV_64FC(n)</code> to create
 * multi-channel (up to <code>CV_CN_MAX</code> channels) matrices.
 * @param s An optional value to initialize each matrix element with. To set all
 * the matrix elements to the particular value after the construction, use the
 * assignment operator <code>Mat.operator=(const Scalar& value)</code>.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-mat">org.opencv.core.Mat.Mat</a>
 */
    public Mat(int rows, int cols, int type, Scalar s)
    {

        nativeObj = n_Mat(rows, cols, type, s.val[0], s.val[1], s.val[2], s.val[3]);

        return;
    }

    //
    // C++: Mat::Mat(Size size, int type, Scalar s)
    //

/**
 * <p>Various Mat constructors</p>
 *
 * <p>These are various constructors that form a matrix. As noted in the
 * "AutomaticAllocation", often the default constructor is enough, and the
 * proper matrix will be allocated by an OpenCV function. The constructed matrix
 * can further be assigned to another matrix or matrix expression or can be
 * allocated with "Mat.create". In the former case, the old content is
 * de-referenced.</p>
 *
 * @param size 2D array size: <code>Size(cols, rows)</code>. In the
 * <code>Size()</code> constructor, the number of rows and the number of columns
 * go in the reverse order.
 * @param type Array type. Use <code>CV_8UC1,..., CV_64FC4</code> to create 1-4
 * channel matrices, or <code>CV_8UC(n),..., CV_64FC(n)</code> to create
 * multi-channel (up to <code>CV_CN_MAX</code> channels) matrices.
 * @param s An optional value to initialize each matrix element with. To set all
 * the matrix elements to the particular value after the construction, use the
 * assignment operator <code>Mat.operator=(const Scalar& value)</code>.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-mat">org.opencv.core.Mat.Mat</a>
 */
    public Mat(Size size, int type, Scalar s)
    {

        nativeObj = n_Mat(size.width, size.height, type, s.val[0], s.val[1], s.val[2], s.val[3]);

        return;
    }

    //
    // C++: Mat::Mat(Mat m, Range rowRange, Range colRange = Range::all())
    //

/**
 * <p>Various Mat constructors</p>
 *
 * <p>These are various constructors that form a matrix. As noted in the
 * "AutomaticAllocation", often the default constructor is enough, and the
 * proper matrix will be allocated by an OpenCV function. The constructed matrix
 * can further be assigned to another matrix or matrix expression or can be
 * allocated with "Mat.create". In the former case, the old content is
 * de-referenced.</p>
 *
 * @param m Array that (as a whole or partly) is assigned to the constructed
 * matrix. No data is copied by these constructors. Instead, the header pointing
 * to <code>m</code> data or its sub-array is constructed and associated with
 * it. The reference counter, if any, is incremented. So, when you modify the
 * matrix formed using such a constructor, you also modify the corresponding
 * elements of <code>m</code>. If you want to have an independent copy of the
 * sub-array, use <code>Mat.clone()</code>.
 * @param rowRange Range of the <code>m</code> rows to take. As usual, the range
 * start is inclusive and the range end is exclusive. Use <code>Range.all()</code>
 * to take all the rows.
 * @param colRange Range of the <code>m</code> columns to take. Use
 * <code>Range.all()</code> to take all the columns.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-mat">org.opencv.core.Mat.Mat</a>
 */
    public Mat(Mat m, Range rowRange, Range colRange)
    {

        nativeObj = n_Mat(m.nativeObj, rowRange.start, rowRange.end, colRange.start, colRange.end);

        return;
    }

/**
 * <p>Various Mat constructors</p>
 *
 * <p>These are various constructors that form a matrix. As noted in the
 * "AutomaticAllocation", often the default constructor is enough, and the
 * proper matrix will be allocated by an OpenCV function. The constructed matrix
 * can further be assigned to another matrix or matrix expression or can be
 * allocated with "Mat.create". In the former case, the old content is
 * de-referenced.</p>
 *
 * @param m Array that (as a whole or partly) is assigned to the constructed
 * matrix. No data is copied by these constructors. Instead, the header pointing
 * to <code>m</code> data or its sub-array is constructed and associated with
 * it. The reference counter, if any, is incremented. So, when you modify the
 * matrix formed using such a constructor, you also modify the corresponding
 * elements of <code>m</code>. If you want to have an independent copy of the
 * sub-array, use <code>Mat.clone()</code>.
 * @param rowRange Range of the <code>m</code> rows to take. As usual, the range
 * start is inclusive and the range end is exclusive. Use <code>Range.all()</code>
 * to take all the rows.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-mat">org.opencv.core.Mat.Mat</a>
 */
    public Mat(Mat m, Range rowRange)
    {

        nativeObj = n_Mat(m.nativeObj, rowRange.start, rowRange.end);

        return;
    }

    //
    // C++: Mat::Mat(Mat m, Rect roi)
    //

/**
 * <p>Various Mat constructors</p>
 *
 * <p>These are various constructors that form a matrix. As noted in the
 * "AutomaticAllocation", often the default constructor is enough, and the
 * proper matrix will be allocated by an OpenCV function. The constructed matrix
 * can further be assigned to another matrix or matrix expression or can be
 * allocated with "Mat.create". In the former case, the old content is
 * de-referenced.</p>
 *
 * @param m Array that (as a whole or partly) is assigned to the constructed
 * matrix. No data is copied by these constructors. Instead, the header pointing
 * to <code>m</code> data or its sub-array is constructed and associated with
 * it. The reference counter, if any, is incremented. So, when you modify the
 * matrix formed using such a constructor, you also modify the corresponding
 * elements of <code>m</code>. If you want to have an independent copy of the
 * sub-array, use <code>Mat.clone()</code>.
 * @param roi Region of interest.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-mat">org.opencv.core.Mat.Mat</a>
 */
    public Mat(Mat m, Rect roi)
    {

        nativeObj = n_Mat(m.nativeObj, roi.y, roi.y + roi.height, roi.x, roi.x + roi.width);

        return;
    }

    //
    // C++: Mat Mat::adjustROI(int dtop, int dbottom, int dleft, int dright)
    //

/**
 * <p>Adjusts a submatrix size and position within the parent matrix.</p>
 *
 * <p>The method is complimentary to"Mat.locateROI". The typical use of these
 * functions is to determine the submatrix position within the parent matrix and
 * then shift the position somehow. Typically, it can be required for filtering
 * operations when pixels outside of the ROI should be taken into account. When
 * all the method parameters are positive, the ROI needs to grow in all
 * directions by the specified amount, for example: <code></p>
 *
 * <p>// C++ code:</p>
 *
 * <p>A.adjustROI(2, 2, 2, 2);</p>
 *
 * <p>In this example, the matrix size is increased by 4 elements in each
 * direction. The matrix is shifted by 2 elements to the left and 2 elements up,
 * which brings in all the necessary pixels for the filtering with the 5x5
 * kernel.
 * </code></p>
 *
 * <p><code>adjustROI</code> forces the adjusted ROI to be inside of the parent
 * matrix that is boundaries of the adjusted ROI are constrained by boundaries
 * of the parent matrix. For example, if the submatrix <code>A</code> is located
 * in the first row of a parent matrix and you called <code>A.adjustROI(2, 2, 2,
 * 2)</code> then <code>A</code> will not be increased in the upward direction.</p>
 *
 * <p>The function is used internally by the OpenCV filtering functions, like
 * "filter2D", morphological operations, and so on.</p>
 *
 * @param dtop Shift of the top submatrix boundary upwards.
 * @param dbottom Shift of the bottom submatrix boundary downwards.
 * @param dleft Shift of the left submatrix boundary to the left.
 * @param dright Shift of the right submatrix boundary to the right.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-adjustroi">org.opencv.core.Mat.adjustROI</a>
 * @see org.opencv.imgproc.Imgproc#copyMakeBorder
 */
    public Mat adjustROI(int dtop, int dbottom, int dleft, int dright)
    {

        Mat retVal = new Mat(n_adjustROI(nativeObj, dtop, dbottom, dleft, dright));

        return retVal;
    }

    //
    // C++: void Mat::assignTo(Mat m, int type = -1)
    //

/**
 * <p>Provides a functional form of <code>convertTo</code>.</p>
 *
 * <p>This is an internally used method called by the "MatrixExpressions" engine.</p>
 *
 * @param m Destination array.
 * @param type Desired destination array depth (or -1 if it should be the same
 * as the source type).
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-assignto">org.opencv.core.Mat.assignTo</a>
 */
    public void assignTo(Mat m, int type)
    {

        n_assignTo(nativeObj, m.nativeObj, type);

        return;
    }

/**
 * <p>Provides a functional form of <code>convertTo</code>.</p>
 *
 * <p>This is an internally used method called by the "MatrixExpressions" engine.</p>
 *
 * @param m Destination array.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-assignto">org.opencv.core.Mat.assignTo</a>
 */
    public void assignTo(Mat m)
    {

        n_assignTo(nativeObj, m.nativeObj);

        return;
    }

    //
    // C++: int Mat::channels()
    //

/**
 * <p>Returns the number of matrix channels.</p>
 *
 * <p>The method returns the number of matrix channels.</p>
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-channels">org.opencv.core.Mat.channels</a>
 */
    public int channels()
    {

        int retVal = n_channels(nativeObj);

        return retVal;
    }

    //
    // C++: int Mat::checkVector(int elemChannels, int depth = -1, bool
    // requireContinuous = true)
    //

    public int checkVector(int elemChannels, int depth, boolean requireContinuous)
    {

        int retVal = n_checkVector(nativeObj, elemChannels, depth, requireContinuous);

        return retVal;
    }

    public int checkVector(int elemChannels, int depth)
    {

        int retVal = n_checkVector(nativeObj, elemChannels, depth);

        return retVal;
    }

    public int checkVector(int elemChannels)
    {

        int retVal = n_checkVector(nativeObj, elemChannels);

        return retVal;
    }

    //
    // C++: Mat Mat::clone()
    //

/**
 * <p>Creates a full copy of the array and the underlying data.</p>
 *
 * <p>The method creates a full copy of the array. The original <code>step[]</code>
 * is not taken into account. So, the array copy is a continuous array occupying
 * <code>total()*elemSize()</code> bytes.</p>
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-clone">org.opencv.core.Mat.clone</a>
 */
    public Mat clone()
    {

        Mat retVal = new Mat(n_clone(nativeObj));

        return retVal;
    }

    //
    // C++: Mat Mat::col(int x)
    //

/**
 * <p>Creates a matrix header for the specified matrix column.</p>
 *
 * <p>The method makes a new header for the specified matrix column and returns it.
 * This is an O(1) operation, regardless of the matrix size. The underlying data
 * of the new matrix is shared with the original matrix. See also the "Mat.row"
 * description.</p>
 *
 * @param x A 0-based column index.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-col">org.opencv.core.Mat.col</a>
 */
    public Mat col(int x)
    {

        Mat retVal = new Mat(n_col(nativeObj, x));

        return retVal;
    }

    //
    // C++: Mat Mat::colRange(int startcol, int endcol)
    //

/**
 * <p>Creates a matrix header for the specified column span.</p>
 *
 * <p>The method makes a new header for the specified column span of the matrix.
 * Similarly to "Mat.row" and "Mat.col", this is an O(1) operation.</p>
 *
 * @param startcol An inclusive 0-based start index of the column span.
 * @param endcol An exclusive 0-based ending index of the column span.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-colrange">org.opencv.core.Mat.colRange</a>
 */
    public Mat colRange(int startcol, int endcol)
    {

        Mat retVal = new Mat(n_colRange(nativeObj, startcol, endcol));

        return retVal;
    }

    //
    // C++: Mat Mat::colRange(Range r)
    //

/**
 * <p>Creates a matrix header for the specified column span.</p>
 *
 * <p>The method makes a new header for the specified column span of the matrix.
 * Similarly to "Mat.row" and "Mat.col", this is an O(1) operation.</p>
 *
 * @param r "Range" structure containing both the start and the end indices.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-colrange">org.opencv.core.Mat.colRange</a>
 */
    public Mat colRange(Range r)
    {

        Mat retVal = new Mat(n_colRange(nativeObj, r.start, r.end));

        return retVal;
    }

    //
    // C++: int Mat::dims()
    //

    public int dims()
    {

        int retVal = n_dims(nativeObj);

        return retVal;
    }

    //
    // C++: int Mat::cols()
    //

    public int cols()
    {

        int retVal = n_cols(nativeObj);

        return retVal;
    }

    //
    // C++: void Mat::convertTo(Mat& m, int rtype, double alpha = 1, double beta
    // = 0)
    //

/**
 * <p>Converts an array to another data type with optional scaling.</p>
 *
 * <p>The method converts source pixel values to the target data type.
 * <code>saturate_cast<></code> is applied at the end to avoid possible
 * overflows:</p>
 *
 * <p><em>m(x,y) = saturate _ cast&ltrType&gt(alpha(*this)(x,y) + beta)</em></p>
 *
 * @param m output matrix; if it does not have a proper size or type before the
 * operation, it is reallocated.
 * @param rtype desired output matrix type or, rather, the depth since the
 * number of channels are the same as the input has; if <code>rtype</code> is
 * negative, the output matrix will have the same type as the input.
 * @param alpha optional scale factor.
 * @param beta optional delta added to the scaled values.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-convertto">org.opencv.core.Mat.convertTo</a>
 */
    public void convertTo(Mat m, int rtype, double alpha, double beta)
    {

        n_convertTo(nativeObj, m.nativeObj, rtype, alpha, beta);

        return;
    }

/**
 * <p>Converts an array to another data type with optional scaling.</p>
 *
 * <p>The method converts source pixel values to the target data type.
 * <code>saturate_cast<></code> is applied at the end to avoid possible
 * overflows:</p>
 *
 * <p><em>m(x,y) = saturate _ cast&ltrType&gt(alpha(*this)(x,y) + beta)</em></p>
 *
 * @param m output matrix; if it does not have a proper size or type before the
 * operation, it is reallocated.
 * @param rtype desired output matrix type or, rather, the depth since the
 * number of channels are the same as the input has; if <code>rtype</code> is
 * negative, the output matrix will have the same type as the input.
 * @param alpha optional scale factor.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-convertto">org.opencv.core.Mat.convertTo</a>
 */
    public void convertTo(Mat m, int rtype, double alpha)
    {

        n_convertTo(nativeObj, m.nativeObj, rtype, alpha);

        return;
    }

/**
 * <p>Converts an array to another data type with optional scaling.</p>
 *
 * <p>The method converts source pixel values to the target data type.
 * <code>saturate_cast<></code> is applied at the end to avoid possible
 * overflows:</p>
 *
 * <p><em>m(x,y) = saturate _ cast&ltrType&gt(alpha(*this)(x,y) + beta)</em></p>
 *
 * @param m output matrix; if it does not have a proper size or type before the
 * operation, it is reallocated.
 * @param rtype desired output matrix type or, rather, the depth since the
 * number of channels are the same as the input has; if <code>rtype</code> is
 * negative, the output matrix will have the same type as the input.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-convertto">org.opencv.core.Mat.convertTo</a>
 */
    public void convertTo(Mat m, int rtype)
    {

        n_convertTo(nativeObj, m.nativeObj, rtype);

        return;
    }

    //
    // C++: void Mat::copyTo(Mat& m)
    //

/**
 * <p>Copies the matrix to another one.</p>
 *
 * <p>The method copies the matrix data to another matrix. Before copying the data,
 * the method invokes <code></p>
 *
 * <p>// C++ code:</p>
 *
 * <p>m.create(this->size(), this->type());</p>
 *
 * <p>so that the destination matrix is reallocated if needed. While
 * <code>m.copyTo(m);</code> works flawlessly, the function does not handle the
 * case of a partial overlap between the source and the destination matrices.
 * </code></p>
 *
 * <p>When the operation mask is specified, if the <code>Mat.create</code> call
 * shown above reallocates the matrix, the newly allocated matrix is initialized
 * with all zeros before copying the data.</p>
 *
 * @param m Destination matrix. If it does not have a proper size or type before
 * the operation, it is reallocated.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-copyto">org.opencv.core.Mat.copyTo</a>
 */
    public void copyTo(Mat m)
    {

        n_copyTo(nativeObj, m.nativeObj);

        return;
    }

    //
    // C++: void Mat::copyTo(Mat& m, Mat mask)
    //

/**
 * <p>Copies the matrix to another one.</p>
 *
 * <p>The method copies the matrix data to another matrix. Before copying the data,
 * the method invokes <code></p>
 *
 * <p>// C++ code:</p>
 *
 * <p>m.create(this->size(), this->type());</p>
 *
 * <p>so that the destination matrix is reallocated if needed. While
 * <code>m.copyTo(m);</code> works flawlessly, the function does not handle the
 * case of a partial overlap between the source and the destination matrices.
 * </code></p>
 *
 * <p>When the operation mask is specified, if the <code>Mat.create</code> call
 * shown above reallocates the matrix, the newly allocated matrix is initialized
 * with all zeros before copying the data.</p>
 *
 * @param m Destination matrix. If it does not have a proper size or type before
 * the operation, it is reallocated.
 * @param mask Operation mask. Its non-zero elements indicate which matrix
 * elements need to be copied.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-copyto">org.opencv.core.Mat.copyTo</a>
 */
    public void copyTo(Mat m, Mat mask)
    {

        n_copyTo(nativeObj, m.nativeObj, mask.nativeObj);

        return;
    }

    //
    // C++: void Mat::create(int rows, int cols, int type)
    //

/**
 * <p>Allocates new array data if needed.</p>
 *
 * <p>This is one of the key <code>Mat</code> methods. Most new-style OpenCV
 * functions and methods that produce arrays call this method for each output
 * array. The method uses the following algorithm:</p>
 * <ul>
 *   <li> If the current array shape and the type match the new ones, return
 * immediately. Otherwise, de-reference the previous data by calling
 * "Mat.release".
 *   <li> Initialize the new header.
 *   <li> Allocate the new data of <code>total()*elemSize()</code> bytes.
 *   <li> Allocate the new, associated with the data, reference counter and set
 * it to 1.
 * </ul>
 * <p>Such a scheme makes the memory management robust and efficient at the same
 * time and helps avoid extra typing for you. This means that usually there is
 * no need to explicitly allocate output arrays. That is, instead of writing:
 * <code></p>
 *
 * <p>// C++ code:</p>
 *
 * <p>Mat color;...</p>
 *
 * <p>Mat gray(color.rows, color.cols, color.depth());</p>
 *
 * <p>cvtColor(color, gray, CV_BGR2GRAY);</p>
 *
 * <p>you can simply write:</p>
 *
 * <p>Mat color;...</p>
 *
 * <p>Mat gray;</p>
 *
 * <p>cvtColor(color, gray, CV_BGR2GRAY);</p>
 *
 * <p>because <code>cvtColor</code>, as well as the most of OpenCV functions, calls
 * <code>Mat.create()</code> for the output array internally.
 * </code></p>
 *
 * @param rows New number of rows.
 * @param cols New number of columns.
 * @param type New matrix type.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-create">org.opencv.core.Mat.create</a>
 */
    public void create(int rows, int cols, int type)
    {

        n_create(nativeObj, rows, cols, type);

        return;
    }

    //
    // C++: void Mat::create(Size size, int type)
    //

/**
 * <p>Allocates new array data if needed.</p>
 *
 * <p>This is one of the key <code>Mat</code> methods. Most new-style OpenCV
 * functions and methods that produce arrays call this method for each output
 * array. The method uses the following algorithm:</p>
 * <ul>
 *   <li> If the current array shape and the type match the new ones, return
 * immediately. Otherwise, de-reference the previous data by calling
 * "Mat.release".
 *   <li> Initialize the new header.
 *   <li> Allocate the new data of <code>total()*elemSize()</code> bytes.
 *   <li> Allocate the new, associated with the data, reference counter and set
 * it to 1.
 * </ul>
 * <p>Such a scheme makes the memory management robust and efficient at the same
 * time and helps avoid extra typing for you. This means that usually there is
 * no need to explicitly allocate output arrays. That is, instead of writing:
 * <code></p>
 *
 * <p>// C++ code:</p>
 *
 * <p>Mat color;...</p>
 *
 * <p>Mat gray(color.rows, color.cols, color.depth());</p>
 *
 * <p>cvtColor(color, gray, CV_BGR2GRAY);</p>
 *
 * <p>you can simply write:</p>
 *
 * <p>Mat color;...</p>
 *
 * <p>Mat gray;</p>
 *
 * <p>cvtColor(color, gray, CV_BGR2GRAY);</p>
 *
 * <p>because <code>cvtColor</code>, as well as the most of OpenCV functions, calls
 * <code>Mat.create()</code> for the output array internally.
 * </code></p>
 *
 * @param size Alternative new matrix size specification: <code>Size(cols,
 * rows)</code>
 * @param type New matrix type.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-create">org.opencv.core.Mat.create</a>
 */
    public void create(Size size, int type)
    {

        n_create(nativeObj, size.width, size.height, type);

        return;
    }

    //
    // C++: Mat Mat::cross(Mat m)
    //

/**
 * <p>Computes a cross-product of two 3-element vectors.</p>
 *
 * <p>The method computes a cross-product of two 3-element vectors. The vectors
 * must be 3-element floating-point vectors of the same shape and size. The
 * result is another 3-element vector of the same shape and type as operands.</p>
 *
 * @param m Another cross-product operand.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-cross">org.opencv.core.Mat.cross</a>
 */
    public Mat cross(Mat m)
    {

        Mat retVal = new Mat(n_cross(nativeObj, m.nativeObj));

        return retVal;
    }

    //
    // C++: long Mat::dataAddr()
    //

    public long dataAddr()
    {

        long retVal = n_dataAddr(nativeObj);

        return retVal;
    }

    //
    // C++: int Mat::depth()
    //

/**
 * <p>Returns the depth of a matrix element.</p>
 *
 * <p>The method returns the identifier of the matrix element depth (the type of
 * each individual channel). For example, for a 16-bit signed element array, the
 * method returns <code>CV_16S</code>. A complete list of matrix types contains
 * the following values:</p>
 * <ul>
 *   <li> <code>CV_8U</code> - 8-bit unsigned integers (<code>0..255</code>)
 *   <li> <code>CV_8S</code> - 8-bit signed integers (<code>-128..127</code>)
 *   <li> <code>CV_16U</code> - 16-bit unsigned integers (<code>0..65535</code>)
 *   <li> <code>CV_16S</code> - 16-bit signed integers (<code>-32768..32767</code>)
 *   <li> <code>CV_32S</code> - 32-bit signed integers (<code>-2147483648..2147483647</code>)
 *   <li> <code>CV_32F</code> - 32-bit floating-point numbers (<code>-FLT_MAX..FLT_MAX,
 * INF, NAN</code>)
 *   <li> <code>CV_64F</code> - 64-bit floating-point numbers (<code>-DBL_MAX..DBL_MAX,
 * INF, NAN</code>)
 * </ul>
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-depth">org.opencv.core.Mat.depth</a>
 */
    public int depth()
    {

        int retVal = n_depth(nativeObj);

        return retVal;
    }

    //
    // C++: Mat Mat::diag(int d = 0)
    //

/**
 * <p>Extracts a diagonal from a matrix, or creates a diagonal matrix.</p>
 *
 * <p>The method makes a new header for the specified matrix diagonal. The new
 * matrix is represented as a single-column matrix. Similarly to "Mat.row" and
 * "Mat.col", this is an O(1) operation.</p>
 *
 * @param d Single-column matrix that forms a diagonal matrix or index of the
 * diagonal, with the following values:
 * <ul>
 *   <li> d=0 is the main diagonal.
 *   <li> d>0 is a diagonal from the lower half. For example, <code>d=1</code>
 * means the diagonal is set immediately below the main one.
 *   <li> d<0 is a diagonal from the upper half. For example, <code>d=1</code>
 * means the diagonal is set immediately above the main one.
 * </ul>
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-diag">org.opencv.core.Mat.diag</a>
 */
    public Mat diag(int d)
    {

        Mat retVal = new Mat(n_diag(nativeObj, d));

        return retVal;
    }

/**
 * <p>Extracts a diagonal from a matrix, or creates a diagonal matrix.</p>
 *
 * <p>The method makes a new header for the specified matrix diagonal. The new
 * matrix is represented as a single-column matrix. Similarly to "Mat.row" and
 * "Mat.col", this is an O(1) operation.</p>
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-diag">org.opencv.core.Mat.diag</a>
 */
    public Mat diag()
    {

        Mat retVal = new Mat(n_diag(nativeObj, 0));

        return retVal;
    }

    //
    // C++: static Mat Mat::diag(Mat d)
    //

/**
 * <p>Extracts a diagonal from a matrix, or creates a diagonal matrix.</p>
 *
 * <p>The method makes a new header for the specified matrix diagonal. The new
 * matrix is represented as a single-column matrix. Similarly to "Mat.row" and
 * "Mat.col", this is an O(1) operation.</p>
 *
 * @param d Single-column matrix that forms a diagonal matrix or index of the
 * diagonal, with the following values:
 * <ul>
 *   <li> d=0 is the main diagonal.
 *   <li> d>0 is a diagonal from the lower half. For example, <code>d=1</code>
 * means the diagonal is set immediately below the main one.
 *   <li> d<0 is a diagonal from the upper half. For example, <code>d=1</code>
 * means the diagonal is set immediately above the main one.
 * </ul>
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-diag">org.opencv.core.Mat.diag</a>
 */
    public static Mat diag(Mat d)
    {

        Mat retVal = new Mat(n_diag(d.nativeObj));

        return retVal;
    }

    //
    // C++: double Mat::dot(Mat m)
    //

/**
 * <p>Computes a dot-product of two vectors.</p>
 *
 * <p>The method computes a dot-product of two matrices. If the matrices are not
 * single-column or single-row vectors, the top-to-bottom left-to-right scan
 * ordering is used to treat them as 1D vectors. The vectors must have the same
 * size and type. If the matrices have more than one channel, the dot products
 * from all the channels are summed together.</p>
 *
 * @param m another dot-product operand.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-dot">org.opencv.core.Mat.dot</a>
 */
    public double dot(Mat m)
    {

        double retVal = n_dot(nativeObj, m.nativeObj);

        return retVal;
    }

    //
    // C++: size_t Mat::elemSize()
    //

/**
 * <p>Returns the matrix element size in bytes.</p>
 *
 * <p>The method returns the matrix element size in bytes. For example, if the
 * matrix type is <code>CV_16SC3</code>, the method returns <code>3*sizeof(short)</code>
 * or 6.</p>
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-elemsize">org.opencv.core.Mat.elemSize</a>
 */
    public long elemSize()
    {

        long retVal = n_elemSize(nativeObj);

        return retVal;
    }

    //
    // C++: size_t Mat::elemSize1()
    //

/**
 * <p>Returns the size of each matrix element channel in bytes.</p>
 *
 * <p>The method returns the matrix element channel size in bytes, that is, it
 * ignores the number of channels. For example, if the matrix type is
 * <code>CV_16SC3</code>, the method returns <code>sizeof(short)</code> or 2.</p>
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-elemsize1">org.opencv.core.Mat.elemSize1</a>
 */
    public long elemSize1()
    {

        long retVal = n_elemSize1(nativeObj);

        return retVal;
    }

    //
    // C++: bool Mat::empty()
    //

/**
 * <p>Returns <code>true</code> if the array has no elements.</p>
 *
 * <p>The method returns <code>true</code> if <code>Mat.total()</code> is 0 or if
 * <code>Mat.data</code> is NULL. Because of <code>pop_back()</code> and
 * <code>resize()</code> methods <code>M.total() == 0</code> does not imply that
 * <code>M.data == NULL</code>.</p>
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-empty">org.opencv.core.Mat.empty</a>
 */
    public boolean empty()
    {

        boolean retVal = n_empty(nativeObj);

        return retVal;
    }

    //
    // C++: static Mat Mat::eye(int rows, int cols, int type)
    //

/**
 * <p>Returns an identity matrix of the specified size and type.</p>
 *
 * <p>The method returns a Matlab-style identity matrix initializer, similarly to
 * "Mat.zeros". Similarly to"Mat.ones", you can use a scale operation to
 * create a scaled identity matrix efficiently: <code></p>
 *
 * <p>// C++ code:</p>
 *
 * <p>// make a 4x4 diagonal matrix with 0.1's on the diagonal.</p>
 *
 * <p>Mat A = Mat.eye(4, 4, CV_32F)*0.1;</p>
 *
 * @param rows Number of rows.
 * @param cols Number of columns.
 * @param type Created matrix type.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-eye">org.opencv.core.Mat.eye</a>
 */
    public static Mat eye(int rows, int cols, int type)
    {

        Mat retVal = new Mat(n_eye(rows, cols, type));

        return retVal;
    }

    //
    // C++: static Mat Mat::eye(Size size, int type)
    //

/**
 * <p>Returns an identity matrix of the specified size and type.</p>
 *
 * <p>The method returns a Matlab-style identity matrix initializer, similarly to
 * "Mat.zeros". Similarly to"Mat.ones", you can use a scale operation to
 * create a scaled identity matrix efficiently: <code></p>
 *
 * <p>// C++ code:</p>
 *
 * <p>// make a 4x4 diagonal matrix with 0.1's on the diagonal.</p>
 *
 * <p>Mat A = Mat.eye(4, 4, CV_32F)*0.1;</p>
 *
 * @param size Alternative matrix size specification as <code>Size(cols,
 * rows)</code>.
 * @param type Created matrix type.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-eye">org.opencv.core.Mat.eye</a>
 */
    public static Mat eye(Size size, int type)
    {

        Mat retVal = new Mat(n_eye(size.width, size.height, type));

        return retVal;
    }

    //
    // C++: Mat Mat::inv(int method = DECOMP_LU)
    //

/**
 * <p>Inverses a matrix.</p>
 *
 * <p>The method performs a matrix inversion by means of matrix expressions. This
 * means that a temporary matrix inversion object is returned by the method and
 * can be used further as a part of more complex matrix expressions or can be
 * assigned to a matrix.</p>
 *
 * @param method Matrix inversion method. Possible values are the following:
 * <ul>
 *   <li> DECOMP_LU is the LU decomposition. The matrix must be non-singular.
 *   <li> DECOMP_CHOLESKY is the Cholesky <em>LL^T</em> decomposition for
 * symmetrical positively defined matrices only. This type is about twice faster
 * than LU on big matrices.
 *   <li> DECOMP_SVD is the SVD decomposition. If the matrix is singular or even
 * non-square, the pseudo inversion is computed.
 * </ul>
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-inv">org.opencv.core.Mat.inv</a>
 */
    public Mat inv(int method)
    {

        Mat retVal = new Mat(n_inv(nativeObj, method));

        return retVal;
    }

/**
 * <p>Inverses a matrix.</p>
 *
 * <p>The method performs a matrix inversion by means of matrix expressions. This
 * means that a temporary matrix inversion object is returned by the method and
 * can be used further as a part of more complex matrix expressions or can be
 * assigned to a matrix.</p>
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-inv">org.opencv.core.Mat.inv</a>
 */
    public Mat inv()
    {

        Mat retVal = new Mat(n_inv(nativeObj));

        return retVal;
    }

    //
    // C++: bool Mat::isContinuous()
    //

/**
 * <p>Reports whether the matrix is continuous or not.</p>
 *
 * <p>The method returns <code>true</code> if the matrix elements are stored
 * continuously without gaps at the end of each row. Otherwise, it returns
 * <code>false</code>. Obviously, <code>1x1</code> or <code>1xN</code> matrices
 * are always continuous. Matrices created with "Mat.create" are always
 * continuous. But if you extract a part of the matrix using "Mat.col",
 * "Mat.diag", and so on, or constructed a matrix header for externally
 * allocated data, such matrices may no longer have this property.
 * The continuity flag is stored as a bit in the <code>Mat.flags</code> field
 * and is computed automatically when you construct a matrix header. Thus, the
 * continuity check is a very fast operation, though theoretically it could be
 * done as follows: <code></p>
 *
 * <p>// C++ code:</p>
 *
 * <p>// alternative implementation of Mat.isContinuous()</p>
 *
 * <p>bool myCheckMatContinuity(const Mat& m)</p>
 *
 *
 * <p>//return (m.flags & Mat.CONTINUOUS_FLAG) != 0;</p>
 *
 * <p>return m.rows == 1 || m.step == m.cols*m.elemSize();</p>
 *
 *
 * <p>The method is used in quite a few of OpenCV functions. The point is that
 * element-wise operations (such as arithmetic and logical operations, math
 * functions, alpha blending, color space transformations, and others) do not
 * depend on the image geometry. Thus, if all the input and output arrays are
 * continuous, the functions can process them as very long single-row vectors.
 * The example below illustrates how an alpha-blending function can be
 * implemented.</p>
 *
 * <p>template<typename T></p>
 *
 * <p>void alphaBlendRGBA(const Mat& src1, const Mat& src2, Mat& dst)</p>
 *
 *
 * <p>const float alpha_scale = (float)std.numeric_limits<T>.max(),</p>
 *
 * <p>inv_scale = 1.f/alpha_scale;</p>
 *
 * <p>CV_Assert(src1.type() == src2.type() &&</p>
 *
 * <p>src1.type() == CV_MAKETYPE(DataType<T>.depth, 4) &&</p>
 *
 * <p>src1.size() == src2.size());</p>
 *
 * <p>Size size = src1.size();</p>
 *
 * <p>dst.create(size, src1.type());</p>
 *
 * <p>// here is the idiom: check the arrays for continuity and,</p>
 *
 * <p>// if this is the case,</p>
 *
 * <p>// treat the arrays as 1D vectors</p>
 *
 * <p>if(src1.isContinuous() && src2.isContinuous() && dst.isContinuous())</p>
 *
 *
 * <p>size.width *= size.height;</p>
 *
 * <p>size.height = 1;</p>
 *
 *
 * <p>size.width *= 4;</p>
 *
 * <p>for(int i = 0; i < size.height; i++)</p>
 *
 *
 * <p>// when the arrays are continuous,</p>
 *
 * <p>// the outer loop is executed only once</p>
 *
 * <p>const T* ptr1 = src1.ptr<T>(i);</p>
 *
 * <p>const T* ptr2 = src2.ptr<T>(i);</p>
 *
 * <p>T* dptr = dst.ptr<T>(i);</p>
 *
 * <p>for(int j = 0; j < size.width; j += 4)</p>
 *
 *
 * <p>float alpha = ptr1[j+3]*inv_scale, beta = ptr2[j+3]*inv_scale;</p>
 *
 * <p>dptr[j] = saturate_cast<T>(ptr1[j]*alpha + ptr2[j]*beta);</p>
 *
 * <p>dptr[j+1] = saturate_cast<T>(ptr1[j+1]*alpha + ptr2[j+1]*beta);</p>
 *
 * <p>dptr[j+2] = saturate_cast<T>(ptr1[j+2]*alpha + ptr2[j+2]*beta);</p>
 *
 * <p>dptr[j+3] = saturate_cast<T>((1 - (1-alpha)*(1-beta))*alpha_scale);</p>
 *
 *
 *
 *
 * <p>This approach, while being very simple, can boost the performance of a simple
 * element-operation by 10-20 percents, especially if the image is rather small
 * and the operation is quite simple.
 * </code></p>
 *
 * <p>Another OpenCV idiom in this function, a call of "Mat.create" for the
 * destination array, that allocates the destination array unless it already has
 * the proper size and type. And while the newly allocated arrays are always
 * continuous, you still need to check the destination array because
 * "Mat.create" does not always allocate a new matrix.</p>
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-iscontinuous">org.opencv.core.Mat.isContinuous</a>
 */
    public boolean isContinuous()
    {

        boolean retVal = n_isContinuous(nativeObj);

        return retVal;
    }

    //
    // C++: bool Mat::isSubmatrix()
    //

    public boolean isSubmatrix()
    {

        boolean retVal = n_isSubmatrix(nativeObj);

        return retVal;
    }

    //
    // C++: void Mat::locateROI(Size wholeSize, Point ofs)
    //

/**
 * <p>Locates the matrix header within a parent matrix.</p>
 *
 * <p>After you extracted a submatrix from a matrix using "Mat.row", "Mat.col",
 * "Mat.rowRange", "Mat.colRange", and others, the resultant submatrix points
 * just to the part of the original big matrix. However, each submatrix contains
 * information (represented by <code>datastart</code> and <code>dataend</code>
 * fields) that helps reconstruct the original matrix size and the position of
 * the extracted submatrix within the original matrix. The method
 * <code>locateROI</code> does exactly that.</p>
 *
 * @param wholeSize Output parameter that contains the size of the whole matrix
 * containing <code>*this</code> as a part.
 * @param ofs Output parameter that contains an offset of <code>*this</code>
 * inside the whole matrix.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-locateroi">org.opencv.core.Mat.locateROI</a>
 */
    public void locateROI(Size wholeSize, Point ofs)
    {
        double[] wholeSize_out = new double[2];
        double[] ofs_out = new double[2];
        locateROI_0(nativeObj, wholeSize_out, ofs_out);
        if(wholeSize!=null){ wholeSize.width = wholeSize_out[0]; wholeSize.height = wholeSize_out[1]; }
        if(ofs!=null){ ofs.x = ofs_out[0]; ofs.y = ofs_out[1]; }
        return;
    }

    //
    // C++: Mat Mat::mul(Mat m, double scale = 1)
    //

/**
 * <p>Performs an element-wise multiplication or division of the two matrices.</p>
 *
 * <p>The method returns a temporary object encoding per-element array
 * multiplication, with optional scale. Note that this is not a matrix
 * multiplication that corresponds to a simpler "*" operator.
 * Example: <code></p>
 *
 * <p>// C++ code:</p>
 *
 * <p>Mat C = A.mul(5/B); // equivalent to divide(A, B, C, 5)</p>
 *
 * @param m Another array of the same type and the same size as
 * <code>*this</code>, or a matrix expression.
 * @param scale Optional scale factor.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-mul">org.opencv.core.Mat.mul</a>
 */
    public Mat mul(Mat m, double scale)
    {

        Mat retVal = new Mat(n_mul(nativeObj, m.nativeObj, scale));

        return retVal;
    }

/**
 * <p>Performs an element-wise multiplication or division of the two matrices.</p>
 *
 * <p>The method returns a temporary object encoding per-element array
 * multiplication, with optional scale. Note that this is not a matrix
 * multiplication that corresponds to a simpler "*" operator.
 * Example: <code></p>
 *
 * <p>// C++ code:</p>
 *
 * <p>Mat C = A.mul(5/B); // equivalent to divide(A, B, C, 5)</p>
 *
 * @param m Another array of the same type and the same size as
 * <code>*this</code>, or a matrix expression.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-mul">org.opencv.core.Mat.mul</a>
 */
    public Mat mul(Mat m)
    {

        Mat retVal = new Mat(n_mul(nativeObj, m.nativeObj));

        return retVal;
    }

    //
    // C++: static Mat Mat::ones(int rows, int cols, int type)
    //

/**
 * <p>Returns an array of all 1's of the specified size and type.</p>
 *
 * <p>The method returns a Matlab-style 1's array initializer, similarly
 * to"Mat.zeros". Note that using this method you can initialize an array with
 * an arbitrary value, using the following Matlab idiom: <code></p>
 *
 * <p>// C++ code:</p>
 *
 * <p>Mat A = Mat.ones(100, 100, CV_8U)*3; // make 100x100 matrix filled with 3.</p>
 *
 * <p>The above operation does not form a 100x100 matrix of 1's and then multiply
 * it by 3. Instead, it just remembers the scale factor (3 in this case) and use
 * it when actually invoking the matrix initializer.
 * </code></p>
 *
 * @param rows Number of rows.
 * @param cols Number of columns.
 * @param type Created matrix type.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-ones">org.opencv.core.Mat.ones</a>
 */
    public static Mat ones(int rows, int cols, int type)
    {

        Mat retVal = new Mat(n_ones(rows, cols, type));

        return retVal;
    }

    //
    // C++: static Mat Mat::ones(Size size, int type)
    //

/**
 * <p>Returns an array of all 1's of the specified size and type.</p>
 *
 * <p>The method returns a Matlab-style 1's array initializer, similarly
 * to"Mat.zeros". Note that using this method you can initialize an array with
 * an arbitrary value, using the following Matlab idiom: <code></p>
 *
 * <p>// C++ code:</p>
 *
 * <p>Mat A = Mat.ones(100, 100, CV_8U)*3; // make 100x100 matrix filled with 3.</p>
 *
 * <p>The above operation does not form a 100x100 matrix of 1's and then multiply
 * it by 3. Instead, it just remembers the scale factor (3 in this case) and use
 * it when actually invoking the matrix initializer.
 * </code></p>
 *
 * @param size Alternative to the matrix size specification <code>Size(cols,
 * rows)</code>.
 * @param type Created matrix type.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-ones">org.opencv.core.Mat.ones</a>
 */
    public static Mat ones(Size size, int type)
    {

        Mat retVal = new Mat(n_ones(size.width, size.height, type));

        return retVal;
    }

    //
    // C++: void Mat::push_back(Mat m)
    //

/**
 * <p>Adds elements to the bottom of the matrix.</p>
 *
 * <p>The methods add one or more elements to the bottom of the matrix. They
 * emulate the corresponding method of the STL vector class. When
 * <code>elem</code> is <code>Mat</code>, its type and the number of columns
 * must be the same as in the container matrix.</p>
 *
 * @param m Added line(s).
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-push-back">org.opencv.core.Mat.push_back</a>
 */
    public void push_back(Mat m)
    {

        n_push_back(nativeObj, m.nativeObj);

        return;
    }

    //
    // C++: void Mat::release()
    //

/**
 * <p>Decrements the reference counter and deallocates the matrix if needed.</p>
 *
 * <p>The method decrements the reference counter associated with the matrix data.
 * When the reference counter reaches 0, the matrix data is deallocated and the
 * data and the reference counter pointers are set to NULL's. If the matrix
 * header points to an external data set (see "Mat.Mat"), the reference counter
 * is NULL, and the method has no effect in this case.</p>
 *
 * <p>This method can be called manually to force the matrix data deallocation. But
 * since this method is automatically called in the destructor, or by any other
 * method that changes the data pointer, it is usually not needed. The reference
 * counter decrement and check for 0 is an atomic operation on the platforms
 * that support it. Thus, it is safe to operate on the same matrices
 * asynchronously in different threads.</p>
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-release">org.opencv.core.Mat.release</a>
 */
    public void release()
    {

        n_release(nativeObj);

        return;
    }

    //
    // C++: Mat Mat::reshape(int cn, int rows = 0)
    //

/**
 * <p>Changes the shape and/or the number of channels of a 2D matrix without
 * copying the data.</p>
 *
 * <p>The method makes a new matrix header for <code>*this</code> elements. The new
 * matrix may have a different size and/or different number of channels. Any
 * combination is possible if:</p>
 * <ul>
 *   <li> No extra elements are included into the new matrix and no elements are
 * excluded. Consequently, the product <code>rows*cols*channels()</code> must
 * stay the same after the transformation.
 *   <li> No data is copied. That is, this is an O(1) operation. Consequently,
 * if you change the number of rows, or the operation changes the indices of
 * elements row in some other way, the matrix must be continuous. See
 * "Mat.isContinuous".
 * </ul>
 * <p>For example, if there is a set of 3D points stored as an STL vector, and you
 * want to represent the points as a <code>3xN</code> matrix, do the following:
 * <code></p>
 *
 * <p>// C++ code:</p>
 *
 * <p>std.vector<Point3f> vec;...</p>
 *
 * <p>Mat pointMat = Mat(vec). // convert vector to Mat, O(1) operation</p>
 *
 * <p>reshape(1). // make Nx3 1-channel matrix out of Nx1 3-channel.</p>
 *
 * <p>// Also, an O(1) operation</p>
 *
 * <p>t(); // finally, transpose the Nx3 matrix.</p>
 *
 * <p>// This involves copying all the elements</p>
 *
 * @param cn New number of channels. If the parameter is 0, the number of
 * channels remains the same.
 * @param rows New number of rows. If the parameter is 0, the number of rows
 * remains the same.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-reshape">org.opencv.core.Mat.reshape</a>
 */
    public Mat reshape(int cn, int rows)
    {

        Mat retVal = new Mat(n_reshape(nativeObj, cn, rows));

        return retVal;
    }

/**
 * <p>Changes the shape and/or the number of channels of a 2D matrix without
 * copying the data.</p>
 *
 * <p>The method makes a new matrix header for <code>*this</code> elements. The new
 * matrix may have a different size and/or different number of channels. Any
 * combination is possible if:</p>
 * <ul>
 *   <li> No extra elements are included into the new matrix and no elements are
 * excluded. Consequently, the product <code>rows*cols*channels()</code> must
 * stay the same after the transformation.
 *   <li> No data is copied. That is, this is an O(1) operation. Consequently,
 * if you change the number of rows, or the operation changes the indices of
 * elements row in some other way, the matrix must be continuous. See
 * "Mat.isContinuous".
 * </ul>
 * <p>For example, if there is a set of 3D points stored as an STL vector, and you
 * want to represent the points as a <code>3xN</code> matrix, do the following:
 * <code></p>
 *
 * <p>// C++ code:</p>
 *
 * <p>std.vector<Point3f> vec;...</p>
 *
 * <p>Mat pointMat = Mat(vec). // convert vector to Mat, O(1) operation</p>
 *
 * <p>reshape(1). // make Nx3 1-channel matrix out of Nx1 3-channel.</p>
 *
 * <p>// Also, an O(1) operation</p>
 *
 * <p>t(); // finally, transpose the Nx3 matrix.</p>
 *
 * <p>// This involves copying all the elements</p>
 *
 * @param cn New number of channels. If the parameter is 0, the number of
 * channels remains the same.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-reshape">org.opencv.core.Mat.reshape</a>
 */
    public Mat reshape(int cn)
    {

        Mat retVal = new Mat(n_reshape(nativeObj, cn));

        return retVal;
    }

    //
    // C++: Mat Mat::row(int y)
    //

/**
 * <p>Creates a matrix header for the specified matrix row.</p>
 *
 * <p>The method makes a new header for the specified matrix row and returns it.
 * This is an O(1) operation, regardless of the matrix size. The underlying data
 * of the new matrix is shared with the original matrix. Here is the example of
 * one of the classical basic matrix processing operations, <code>axpy</code>,
 * used by LU and many other algorithms: <code></p>
 *
 * <p>// C++ code:</p>
 *
 * <p>inline void matrix_axpy(Mat& A, int i, int j, double alpha)</p>
 *
 *
 * <p>A.row(i) += A.row(j)*alpha;</p>
 *
 *
 * <p>Note: </code></p>
 *
 * <p>In the current implementation, the following code does not work as expected:
 * <code></p>
 *
 * <p>// C++ code:</p>
 *
 * <p>Mat A;...</p>
 *
 * <p>A.row(i) = A.row(j); // will not work</p>
 *
 * <p>This happens because <code>A.row(i)</code> forms a temporary header that is
 * further assigned to another header. Remember that each of these operations is
 * O(1), that is, no data is copied. Thus, the above assignment is not true if
 * you may have expected the j-th row to be copied to the i-th row. To achieve
 * that, you should either turn this simple assignment into an expression or use
 * the "Mat.copyTo" method:</p>
 *
 * <p>Mat A;...</p>
 *
 * <p>// works, but looks a bit obscure.</p>
 *
 * <p>A.row(i) = A.row(j) + 0;</p>
 *
 * <p>// this is a bit longer, but the recommended method.</p>
 *
 * <p>A.row(j).copyTo(A.row(i));</p>
 *
 * @param y A 0-based row index.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-row">org.opencv.core.Mat.row</a>
 */
    public Mat row(int y)
    {

        Mat retVal = new Mat(n_row(nativeObj, y));

        return retVal;
    }

    //
    // C++: Mat Mat::rowRange(int startrow, int endrow)
    //

/**
 * <p>Creates a matrix header for the specified row span.</p>
 *
 * <p>The method makes a new header for the specified row span of the matrix.
 * Similarly to "Mat.row" and "Mat.col", this is an O(1) operation.</p>
 *
 * @param startrow An inclusive 0-based start index of the row span.
 * @param endrow An exclusive 0-based ending index of the row span.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-rowrange">org.opencv.core.Mat.rowRange</a>
 */
    public Mat rowRange(int startrow, int endrow)
    {

        Mat retVal = new Mat(n_rowRange(nativeObj, startrow, endrow));

        return retVal;
    }

    //
    // C++: Mat Mat::rowRange(Range r)
    //

/**
 * <p>Creates a matrix header for the specified row span.</p>
 *
 * <p>The method makes a new header for the specified row span of the matrix.
 * Similarly to "Mat.row" and "Mat.col", this is an O(1) operation.</p>
 *
 * @param r "Range" structure containing both the start and the end indices.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-rowrange">org.opencv.core.Mat.rowRange</a>
 */
    public Mat rowRange(Range r)
    {

        Mat retVal = new Mat(n_rowRange(nativeObj, r.start, r.end));

        return retVal;
    }

    //
    // C++: int Mat::rows()
    //

    public int rows()
    {

        int retVal = n_rows(nativeObj);

        return retVal;
    }

    //
    // C++: Mat Mat::operator =(Scalar s)
    //

    public Mat setTo(Scalar s)
    {

        Mat retVal = new Mat(n_setTo(nativeObj, s.val[0], s.val[1], s.val[2], s.val[3]));

        return retVal;
    }

    //
    // C++: Mat Mat::setTo(Scalar value, Mat mask = Mat())
    //

/**
 * <p>Sets all or some of the array elements to the specified value.</p>
 *
 * @param value Assigned scalar converted to the actual array type.
 * @param mask Operation mask of the same size as <code>*this</code>. This is an
 * advanced variant of the <code>Mat.operator=(const Scalar& s)</code>
 * operator.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-setto">org.opencv.core.Mat.setTo</a>
 */
    public Mat setTo(Scalar value, Mat mask)
    {

        Mat retVal = new Mat(n_setTo(nativeObj, value.val[0], value.val[1], value.val[2], value.val[3], mask.nativeObj));

        return retVal;
    }

    //
    // C++: Mat Mat::setTo(Mat value, Mat mask = Mat())
    //

/**
 * <p>Sets all or some of the array elements to the specified value.</p>
 *
 * @param value Assigned scalar converted to the actual array type.
 * @param mask Operation mask of the same size as <code>*this</code>. This is an
 * advanced variant of the <code>Mat.operator=(const Scalar& s)</code>
 * operator.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-setto">org.opencv.core.Mat.setTo</a>
 */
    public Mat setTo(Mat value, Mat mask)
    {

        Mat retVal = new Mat(n_setTo(nativeObj, value.nativeObj, mask.nativeObj));

        return retVal;
    }

/**
 * <p>Sets all or some of the array elements to the specified value.</p>
 *
 * @param value Assigned scalar converted to the actual array type.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-setto">org.opencv.core.Mat.setTo</a>
 */
    public Mat setTo(Mat value)
    {

        Mat retVal = new Mat(n_setTo(nativeObj, value.nativeObj));

        return retVal;
    }

    //
    // C++: Size Mat::size()
    //

/**
 * <p>Returns a matrix size.</p>
 *
 * <p>The method returns a matrix size: <code>Size(cols, rows)</code>. When the
 * matrix is more than 2-dimensional, the returned size is (-1, -1).</p>
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-size">org.opencv.core.Mat.size</a>
 */
    public Size size()
    {

        Size retVal = new Size(n_size(nativeObj));

        return retVal;
    }

    //
    // C++: size_t Mat::step1(int i = 0)
    //

/**
 * <p>Returns a normalized step.</p>
 *
 * <p>The method returns a matrix step divided by "Mat.elemSize1()". It can be
 * useful to quickly access an arbitrary matrix element.</p>
 *
 * @param i a i
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-step1">org.opencv.core.Mat.step1</a>
 */
    public long step1(int i)
    {

        long retVal = n_step1(nativeObj, i);

        return retVal;
    }

/**
 * <p>Returns a normalized step.</p>
 *
 * <p>The method returns a matrix step divided by "Mat.elemSize1()". It can be
 * useful to quickly access an arbitrary matrix element.</p>
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-step1">org.opencv.core.Mat.step1</a>
 */
    public long step1()
    {

        long retVal = n_step1(nativeObj);

        return retVal;
    }

    //
    // C++: Mat Mat::operator()(int rowStart, int rowEnd, int colStart, int
    // colEnd)
    //

/**
 * <p>Extracts a rectangular submatrix.</p>
 *
 * <p>The operators make a new header for the specified sub-array of
 * <code>*this</code>. They are the most generalized forms of "Mat.row",
 * "Mat.col", "Mat.rowRange", and "Mat.colRange". For example,
 * <code>A(Range(0, 10), Range.all())</code> is equivalent to <code>A.rowRange(0,
 * 10)</code>. Similarly to all of the above, the operators are O(1) operations,
 * that is, no matrix data is copied.</p>
 *
 * @param rowStart a rowStart
 * @param rowEnd a rowEnd
 * @param colStart a colStart
 * @param colEnd a colEnd
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-operator">org.opencv.core.Mat.operator()</a>
 */
    public Mat submat(int rowStart, int rowEnd, int colStart, int colEnd)
    {

        Mat retVal = new Mat(n_submat_rr(nativeObj, rowStart, rowEnd, colStart, colEnd));

        return retVal;
    }

    //
    // C++: Mat Mat::operator()(Range rowRange, Range colRange)
    //

/**
 * <p>Extracts a rectangular submatrix.</p>
 *
 * <p>The operators make a new header for the specified sub-array of
 * <code>*this</code>. They are the most generalized forms of "Mat.row",
 * "Mat.col", "Mat.rowRange", and "Mat.colRange". For example,
 * <code>A(Range(0, 10), Range.all())</code> is equivalent to <code>A.rowRange(0,
 * 10)</code>. Similarly to all of the above, the operators are O(1) operations,
 * that is, no matrix data is copied.</p>
 *
 * @param rowRange Start and end row of the extracted submatrix. The upper
 * boundary is not included. To select all the rows, use <code>Range.all()</code>.
 * @param colRange Start and end column of the extracted submatrix. The upper
 * boundary is not included. To select all the columns, use <code>Range.all()</code>.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-operator">org.opencv.core.Mat.operator()</a>
 */
    public Mat submat(Range rowRange, Range colRange)
    {

        Mat retVal = new Mat(n_submat_rr(nativeObj, rowRange.start, rowRange.end, colRange.start, colRange.end));

        return retVal;
    }

    //
    // C++: Mat Mat::operator()(Rect roi)
    //

/**
 * <p>Extracts a rectangular submatrix.</p>
 *
 * <p>The operators make a new header for the specified sub-array of
 * <code>*this</code>. They are the most generalized forms of "Mat.row",
 * "Mat.col", "Mat.rowRange", and "Mat.colRange". For example,
 * <code>A(Range(0, 10), Range.all())</code> is equivalent to <code>A.rowRange(0,
 * 10)</code>. Similarly to all of the above, the operators are O(1) operations,
 * that is, no matrix data is copied.</p>
 *
 * @param roi Extracted submatrix specified as a rectangle.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-operator">org.opencv.core.Mat.operator()</a>
 */
    public Mat submat(Rect roi)
    {

        Mat retVal = new Mat(n_submat(nativeObj, roi.x, roi.y, roi.width, roi.height));

        return retVal;
    }

    //
    // C++: Mat Mat::t()
    //

/**
 * <p>Transposes a matrix.</p>
 *
 * <p>The method performs matrix transposition by means of matrix expressions. It
 * does not perform the actual transposition but returns a temporary matrix
 * transposition object that can be further used as a part of more complex
 * matrix expressions or can be assigned to a matrix: <code></p>
 *
 * <p>// C++ code:</p>
 *
 * <p>Mat A1 = A + Mat.eye(A.size(), A.type())*lambda;</p>
 *
 * <p>Mat C = A1.t()*A1; // compute (A + lambda*I)^t * (A + lamda*I)</p>
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-t">org.opencv.core.Mat.t</a>
 */
    public Mat t()
    {

        Mat retVal = new Mat(n_t(nativeObj));

        return retVal;
    }

    //
    // C++: size_t Mat::total()
    //

/**
 * <p>Returns the total number of array elements.</p>
 *
 * <p>The method returns the number of array elements (a number of pixels if the
 * array represents an image).</p>
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-total">org.opencv.core.Mat.total</a>
 */
    public long total()
    {

        long retVal = n_total(nativeObj);

        return retVal;
    }

    //
    // C++: int Mat::type()
    //

/**
 * <p>Returns the type of a matrix element.</p>
 *
 * <p>The method returns a matrix element type. This is an identifier compatible
 * with the <code>CvMat</code> type system, like <code>CV_16SC3</code> or 16-bit
 * signed 3-channel array, and so on.</p>
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-type">org.opencv.core.Mat.type</a>
 */
    public int type()
    {

        int retVal = n_type(nativeObj);

        return retVal;
    }

    //
    // C++: static Mat Mat::zeros(int rows, int cols, int type)
    //

/**
 * <p>Returns a zero array of the specified size and type.</p>
 *
 * <p>The method returns a Matlab-style zero array initializer. It can be used to
 * quickly form a constant array as a function parameter, part of a matrix
 * expression, or as a matrix initializer.
 * <code></p>
 *
 * <p>// C++ code:</p>
 *
 * <p>Mat A;</p>
 *
 * <p>A = Mat.zeros(3, 3, CV_32F);</p>
 *
 * <p>In the example above, a new matrix is allocated only if <code>A</code> is not
 * a 3x3 floating-point matrix. Otherwise, the existing matrix <code>A</code> is
 * filled with zeros.
 * </code></p>
 *
 * @param rows Number of rows.
 * @param cols Number of columns.
 * @param type Created matrix type.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-zeros">org.opencv.core.Mat.zeros</a>
 */
    public static Mat zeros(int rows, int cols, int type)
    {

        Mat retVal = new Mat(n_zeros(rows, cols, type));

        return retVal;
    }

    //
    // C++: static Mat Mat::zeros(Size size, int type)
    //

/**
 * <p>Returns a zero array of the specified size and type.</p>
 *
 * <p>The method returns a Matlab-style zero array initializer. It can be used to
 * quickly form a constant array as a function parameter, part of a matrix
 * expression, or as a matrix initializer.
 * <code></p>
 *
 * <p>// C++ code:</p>
 *
 * <p>Mat A;</p>
 *
 * <p>A = Mat.zeros(3, 3, CV_32F);</p>
 *
 * <p>In the example above, a new matrix is allocated only if <code>A</code> is not
 * a 3x3 floating-point matrix. Otherwise, the existing matrix <code>A</code> is
 * filled with zeros.
 * </code></p>
 *
 * @param size Alternative to the matrix size specification <code>Size(cols,
 * rows)</code>.
 * @param type Created matrix type.
 *
 * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-zeros">org.opencv.core.Mat.zeros</a>
 */
    public static Mat zeros(Size size, int type)
    {

        Mat retVal = new Mat(n_zeros(size.width, size.height, type));

        return retVal;
    }

    @Override
    protected void finalize() throws Throwable {
        n_delete(nativeObj);
        super.finalize();
    }

    @Override
    public String toString() {
        return "Mat [ " +
                rows() + "*" + cols() + "*" + CvType.typeToString(type()) +
                ", isCont=" + isContinuous() + ", isSubmat=" + isSubmatrix() +
                ", nativeObj=0x" + Long.toHexString(nativeObj) +
                ", dataAddr=0x" + Long.toHexString(dataAddr()) +
                " ]";
    }

    public String dump() {
        return nDump(nativeObj);
    }

    public int put(int row, int col, double... data) {
        int t = type();
        if (data == null || data.length % CvType.channels(t) != 0)
            throw new java.lang.UnsupportedOperationException(
                    "Provided data element number (" +
                            (data == null ? 0 : data.length) +
                            ") should be multiple of the Mat channels count (" +
                            CvType.channels(t) + ")");
        return nPutD(nativeObj, row, col, data.length, data);
    }

    public int put(int row, int col, float[] data) {
        int t = type();
        if (data == null || data.length % CvType.channels(t) != 0)
            throw new java.lang.UnsupportedOperationException(
                    "Provided data element number (" +
                            (data == null ? 0 : data.length) +
                            ") should be multiple of the Mat channels count (" +
                            CvType.channels(t) + ")");
        if (CvType.depth(t) == CvType.CV_32F) {
            return nPutF(nativeObj, row, col, data.length, data);
        }
        throw new java.lang.UnsupportedOperationException("Mat data type is not compatible: " + t);
    }

    public int put(int row, int col, int[] data) {
        int t = type();
        if (data == null || data.length % CvType.channels(t) != 0)
            throw new java.lang.UnsupportedOperationException(
                    "Provided data element number (" +
                            (data == null ? 0 : data.length) +
                            ") should be multiple of the Mat channels count (" +
                            CvType.channels(t) + ")");
        if (CvType.depth(t) == CvType.CV_32S) {
            return nPutI(nativeObj, row, col, data.length, data);
        }
        throw new java.lang.UnsupportedOperationException("Mat data type is not compatible: " + t);
    }

    public int put(int row, int col, short[] data) {
        int t = type();
        if (data == null || data.length % CvType.channels(t) != 0)
            throw new java.lang.UnsupportedOperationException(
                    "Provided data element number (" +
                            (data == null ? 0 : data.length) +
                            ") should be multiple of the Mat channels count (" +
                            CvType.channels(t) + ")");
        if (CvType.depth(t) == CvType.CV_16U || CvType.depth(t) == CvType.CV_16S) {
            return nPutS(nativeObj, row, col, data.length, data);
        }
        throw new java.lang.UnsupportedOperationException("Mat data type is not compatible: " + t);
    }

    public int put(int row, int col, byte[] data) {
        int t = type();
        if (data == null || data.length % CvType.channels(t) != 0)
            throw new java.lang.UnsupportedOperationException(
                    "Provided data element number (" +
                            (data == null ? 0 : data.length) +
                            ") should be multiple of the Mat channels count (" +
                            CvType.channels(t) + ")");
        if (CvType.depth(t) == CvType.CV_8U || CvType.depth(t) == CvType.CV_8S) {
            return nPutB(nativeObj, row, col, data.length, data);
        }
        throw new java.lang.UnsupportedOperationException("Mat data type is not compatible: " + t);
    }

    public int get(int row, int col, byte[] data) {
        int t = type();
        if (data == null || data.length % CvType.channels(t) != 0)
            throw new java.lang.UnsupportedOperationException(
                    "Provided data element number (" +
                            (data == null ? 0 : data.length) +
                            ") should be multiple of the Mat channels count (" +
                            CvType.channels(t) + ")");
        if (CvType.depth(t) == CvType.CV_8U || CvType.depth(t) == CvType.CV_8S) {
            return nGetB(nativeObj, row, col, data.length, data);
        }
        throw new java.lang.UnsupportedOperationException("Mat data type is not compatible: " + t);
    }

    public int get(int row, int col, short[] data) {
        int t = type();
        if (data == null || data.length % CvType.channels(t) != 0)
            throw new java.lang.UnsupportedOperationException(
                    "Provided data element number (" +
                            (data == null ? 0 : data.length) +
                            ") should be multiple of the Mat channels count (" +
                            CvType.channels(t) + ")");
        if (CvType.depth(t) == CvType.CV_16U || CvType.depth(t) == CvType.CV_16S) {
            return nGetS(nativeObj, row, col, data.length, data);
        }
        throw new java.lang.UnsupportedOperationException("Mat data type is not compatible: " + t);
    }

    public int get(int row, int col, int[] data) {
        int t = type();
        if (data == null || data.length % CvType.channels(t) != 0)
            throw new java.lang.UnsupportedOperationException(
                    "Provided data element number (" +
                            (data == null ? 0 : data.length) +
                            ") should be multiple of the Mat channels count (" +
                            CvType.channels(t) + ")");
        if (CvType.depth(t) == CvType.CV_32S) {
            return nGetI(nativeObj, row, col, data.length, data);
        }
        throw new java.lang.UnsupportedOperationException("Mat data type is not compatible: " + t);
    }

    public int get(int row, int col, float[] data) {
        int t = type();
        if (data == null || data.length % CvType.channels(t) != 0)
            throw new java.lang.UnsupportedOperationException(
                    "Provided data element number (" +
                            (data == null ? 0 : data.length) +
                            ") should be multiple of the Mat channels count (" +
                            CvType.channels(t) + ")");
        if (CvType.depth(t) == CvType.CV_32F) {
            return nGetF(nativeObj, row, col, data.length, data);
        }
        throw new java.lang.UnsupportedOperationException("Mat data type is not compatible: " + t);
    }

    public int get(int row, int col, double[] data) {
        int t = type();
        if (data == null || data.length % CvType.channels(t) != 0)
            throw new java.lang.UnsupportedOperationException(
                    "Provided data element number (" +
                            (data == null ? 0 : data.length) +
                            ") should be multiple of the Mat channels count (" +
                            CvType.channels(t) + ")");
        if (CvType.depth(t) == CvType.CV_64F) {
            return nGetD(nativeObj, row, col, data.length, data);
        }
        throw new java.lang.UnsupportedOperationException("Mat data type is not compatible: " + t);
    }

    public double[] get(int row, int col) {
        return nGet(nativeObj, row, col);
    }

    public int height() {
        return rows();
    }

    public int width() {
        return cols();
    }

    public long getNativeObjAddr() {
        return nativeObj;
    }

    // C++: Mat::Mat()
    private static native long n_Mat();

    // C++: Mat::Mat(int rows, int cols, int type)
    private static native long n_Mat(int rows, int cols, int type);

    // C++: Mat::Mat(Size size, int type)
    private static native long n_Mat(double size_width, double size_height, int type);

    // C++: Mat::Mat(int rows, int cols, int type, Scalar s)
    private static native long n_Mat(int rows, int cols, int type, double s_val0, double s_val1, double s_val2, double s_val3);

    // C++: Mat::Mat(Size size, int type, Scalar s)
    private static native long n_Mat(double size_width, double size_height, int type, double s_val0, double s_val1, double s_val2, double s_val3);

    // C++: Mat::Mat(Mat m, Range rowRange, Range colRange = Range::all())
    private static native long n_Mat(long m_nativeObj, int rowRange_start, int rowRange_end, int colRange_start, int colRange_end);

    private static native long n_Mat(long m_nativeObj, int rowRange_start, int rowRange_end);

    // C++: Mat Mat::adjustROI(int dtop, int dbottom, int dleft, int dright)
    private static native long n_adjustROI(long nativeObj, int dtop, int dbottom, int dleft, int dright);

    // C++: void Mat::assignTo(Mat m, int type = -1)
    private static native void n_assignTo(long nativeObj, long m_nativeObj, int type);

    private static native void n_assignTo(long nativeObj, long m_nativeObj);

    // C++: int Mat::channels()
    private static native int n_channels(long nativeObj);

    // C++: int Mat::checkVector(int elemChannels, int depth = -1, bool
    // requireContinuous = true)
    private static native int n_checkVector(long nativeObj, int elemChannels, int depth, boolean requireContinuous);

    private static native int n_checkVector(long nativeObj, int elemChannels, int depth);

    private static native int n_checkVector(long nativeObj, int elemChannels);

    // C++: Mat Mat::clone()
    private static native long n_clone(long nativeObj);

    // C++: Mat Mat::col(int x)
    private static native long n_col(long nativeObj, int x);

    // C++: Mat Mat::colRange(int startcol, int endcol)
    private static native long n_colRange(long nativeObj, int startcol, int endcol);

    // C++: int Mat::dims()
    private static native int n_dims(long nativeObj);

    // C++: int Mat::cols()
    private static native int n_cols(long nativeObj);

    // C++: void Mat::convertTo(Mat& m, int rtype, double alpha = 1, double beta
    // = 0)
    private static native void n_convertTo(long nativeObj, long m_nativeObj, int rtype, double alpha, double beta);

    private static native void n_convertTo(long nativeObj, long m_nativeObj, int rtype, double alpha);

    private static native void n_convertTo(long nativeObj, long m_nativeObj, int rtype);

    // C++: void Mat::copyTo(Mat& m)
    private static native void n_copyTo(long nativeObj, long m_nativeObj);

    // C++: void Mat::copyTo(Mat& m, Mat mask)
    private static native void n_copyTo(long nativeObj, long m_nativeObj, long mask_nativeObj);

    // C++: void Mat::create(int rows, int cols, int type)
    private static native void n_create(long nativeObj, int rows, int cols, int type);

    // C++: void Mat::create(Size size, int type)
    private static native void n_create(long nativeObj, double size_width, double size_height, int type);

    // C++: Mat Mat::cross(Mat m)
    private static native long n_cross(long nativeObj, long m_nativeObj);

    // C++: long Mat::dataAddr()
    private static native long n_dataAddr(long nativeObj);

    // C++: int Mat::depth()
    private static native int n_depth(long nativeObj);

    // C++: Mat Mat::diag(int d = 0)
    private static native long n_diag(long nativeObj, int d);

    // C++: static Mat Mat::diag(Mat d)
    private static native long n_diag(long d_nativeObj);

    // C++: double Mat::dot(Mat m)
    private static native double n_dot(long nativeObj, long m_nativeObj);

    // C++: size_t Mat::elemSize()
    private static native long n_elemSize(long nativeObj);

    // C++: size_t Mat::elemSize1()
    private static native long n_elemSize1(long nativeObj);

    // C++: bool Mat::empty()
    private static native boolean n_empty(long nativeObj);

    // C++: static Mat Mat::eye(int rows, int cols, int type)
    private static native long n_eye(int rows, int cols, int type);

    // C++: static Mat Mat::eye(Size size, int type)
    private static native long n_eye(double size_width, double size_height, int type);

    // C++: Mat Mat::inv(int method = DECOMP_LU)
    private static native long n_inv(long nativeObj, int method);

    private static native long n_inv(long nativeObj);

    // C++: bool Mat::isContinuous()
    private static native boolean n_isContinuous(long nativeObj);

    // C++: bool Mat::isSubmatrix()
    private static native boolean n_isSubmatrix(long nativeObj);

    // C++: void Mat::locateROI(Size wholeSize, Point ofs)
    private static native void locateROI_0(long nativeObj, double[] wholeSize_out, double[] ofs_out);

    // C++: Mat Mat::mul(Mat m, double scale = 1)
    private static native long n_mul(long nativeObj, long m_nativeObj, double scale);

    private static native long n_mul(long nativeObj, long m_nativeObj);

    // C++: static Mat Mat::ones(int rows, int cols, int type)
    private static native long n_ones(int rows, int cols, int type);

    // C++: static Mat Mat::ones(Size size, int type)
    private static native long n_ones(double size_width, double size_height, int type);

    // C++: void Mat::push_back(Mat m)
    private static native void n_push_back(long nativeObj, long m_nativeObj);

    // C++: void Mat::release()
    private static native void n_release(long nativeObj);

    // C++: Mat Mat::reshape(int cn, int rows = 0)
    private static native long n_reshape(long nativeObj, int cn, int rows);

    private static native long n_reshape(long nativeObj, int cn);

    // C++: Mat Mat::row(int y)
    private static native long n_row(long nativeObj, int y);

    // C++: Mat Mat::rowRange(int startrow, int endrow)
    private static native long n_rowRange(long nativeObj, int startrow, int endrow);

    // C++: int Mat::rows()
    private static native int n_rows(long nativeObj);

    // C++: Mat Mat::operator =(Scalar s)
    private static native long n_setTo(long nativeObj, double s_val0, double s_val1, double s_val2, double s_val3);

    // C++: Mat Mat::setTo(Scalar value, Mat mask = Mat())
    private static native long n_setTo(long nativeObj, double s_val0, double s_val1, double s_val2, double s_val3, long mask_nativeObj);

    // C++: Mat Mat::setTo(Mat value, Mat mask = Mat())
    private static native long n_setTo(long nativeObj, long value_nativeObj, long mask_nativeObj);

    private static native long n_setTo(long nativeObj, long value_nativeObj);

    // C++: Size Mat::size()
    private static native double[] n_size(long nativeObj);

    // C++: size_t Mat::step1(int i = 0)
    private static native long n_step1(long nativeObj, int i);

    private static native long n_step1(long nativeObj);

    // C++: Mat Mat::operator()(Range rowRange, Range colRange)
    private static native long n_submat_rr(long nativeObj, int rowRange_start, int rowRange_end, int colRange_start, int colRange_end);

    // C++: Mat Mat::operator()(Rect roi)
    private static native long n_submat(long nativeObj, int roi_x, int roi_y, int roi_width, int roi_height);

    // C++: Mat Mat::t()
    private static native long n_t(long nativeObj);

    // C++: size_t Mat::total()
    private static native long n_total(long nativeObj);

    // C++: int Mat::type()
    private static native int n_type(long nativeObj);

    // C++: static Mat Mat::zeros(int rows, int cols, int type)
    private static native long n_zeros(int rows, int cols, int type);

    // C++: static Mat Mat::zeros(Size size, int type)
    private static native long n_zeros(double size_width, double size_height, int type);

    // native support for java finalize()
    private static native void n_delete(long nativeObj);

    private static native int nPutD(long self, int row, int col, int count, double[] data);

    private static native int nPutF(long self, int row, int col, int count, float[] data);

    private static native int nPutI(long self, int row, int col, int count, int[] data);

    private static native int nPutS(long self, int row, int col, int count, short[] data);

    private static native int nPutB(long self, int row, int col, int count, byte[] data);

    private static native int nGetB(long self, int row, int col, int count, byte[] vals);

    private static native int nGetS(long self, int row, int col, int count, short[] vals);

    private static native int nGetI(long self, int row, int col, int count, int[] vals);

    private static native int nGetF(long self, int row, int col, int count, float[] vals);

    private static native int nGetD(long self, int row, int col, int count, double[] vals);

    private static native double[] nGet(long self, int row, int col);

    private static native String nDump(long self);
}




Java Source Code List

com.floatlearning.android_opencv_template.MainActivity.java
org.opencv.android.AsyncServiceHelper.java
org.opencv.android.BaseLoaderCallback.java
org.opencv.android.CameraBridgeViewBase.java
org.opencv.android.FpsMeter.java
org.opencv.android.InstallCallbackInterface.java
org.opencv.android.JavaCameraView.java
org.opencv.android.LoaderCallbackInterface.java
org.opencv.android.NativeCameraView.java
org.opencv.android.OpenCVLoader.java
org.opencv.android.StaticHelper.java
org.opencv.android.Utils.java
org.opencv.calib3d.Calib3d.java
org.opencv.calib3d.StereoBM.java
org.opencv.calib3d.StereoSGBM.java
org.opencv.contrib.Contrib.java
org.opencv.contrib.FaceRecognizer.java
org.opencv.contrib.StereoVar.java
org.opencv.core.Algorithm.java
org.opencv.core.Core.java
org.opencv.core.CvException.java
org.opencv.core.CvType.java
org.opencv.core.MatOfByte.java
org.opencv.core.MatOfDMatch.java
org.opencv.core.MatOfDouble.java
org.opencv.core.MatOfFloat4.java
org.opencv.core.MatOfFloat6.java
org.opencv.core.MatOfFloat.java
org.opencv.core.MatOfInt4.java
org.opencv.core.MatOfInt.java
org.opencv.core.MatOfKeyPoint.java
org.opencv.core.MatOfPoint2f.java
org.opencv.core.MatOfPoint3.java
org.opencv.core.MatOfPoint3f.java
org.opencv.core.MatOfPoint.java
org.opencv.core.MatOfRect.java
org.opencv.core.Mat.java
org.opencv.core.Point3.java
org.opencv.core.Point.java
org.opencv.core.Range.java
org.opencv.core.Rect.java
org.opencv.core.RotatedRect.java
org.opencv.core.Scalar.java
org.opencv.core.Size.java
org.opencv.core.TermCriteria.java
org.opencv.features2d.DMatch.java
org.opencv.features2d.DescriptorExtractor.java
org.opencv.features2d.DescriptorMatcher.java
org.opencv.features2d.FeatureDetector.java
org.opencv.features2d.Features2d.java
org.opencv.features2d.GenericDescriptorMatcher.java
org.opencv.features2d.KeyPoint.java
org.opencv.gpu.DeviceInfo.java
org.opencv.gpu.Gpu.java
org.opencv.gpu.TargetArchs.java
org.opencv.highgui.Highgui.java
org.opencv.highgui.VideoCapture.java
org.opencv.imgproc.CLAHE.java
org.opencv.imgproc.Imgproc.java
org.opencv.imgproc.Moments.java
org.opencv.imgproc.Subdiv2D.java
org.opencv.ml.CvANN_MLP_TrainParams.java
org.opencv.ml.CvANN_MLP.java
org.opencv.ml.CvBoostParams.java
org.opencv.ml.CvBoost.java
org.opencv.ml.CvDTreeParams.java
org.opencv.ml.CvDTree.java
org.opencv.ml.CvERTrees.java
org.opencv.ml.CvGBTreesParams.java
org.opencv.ml.CvGBTrees.java
org.opencv.ml.CvKNearest.java
org.opencv.ml.CvNormalBayesClassifier.java
org.opencv.ml.CvParamGrid.java
org.opencv.ml.CvRTParams.java
org.opencv.ml.CvRTrees.java
org.opencv.ml.CvSVMParams.java
org.opencv.ml.CvSVM.java
org.opencv.ml.CvStatModel.java
org.opencv.ml.EM.java
org.opencv.ml.Ml.java
org.opencv.objdetect.CascadeClassifier.java
org.opencv.objdetect.HOGDescriptor.java
org.opencv.objdetect.Objdetect.java
org.opencv.photo.Photo.java
org.opencv.utils.Converters.java
org.opencv.video.BackgroundSubtractorMOG2.java
org.opencv.video.BackgroundSubtractorMOG.java
org.opencv.video.BackgroundSubtractor.java
org.opencv.video.KalmanFilter.java
org.opencv.video.Video.java