Back to project page android-opencv-template.
The source code is released under:
MIT License
If you think the Android project android-opencv-template listed in this page is inappropriate, such as containing malicious code/tools or violating the copyright, please email info at java2s dot com, thanks.
package org.opencv.core; /*from w w w . j a va2s . c om*/ // C++: class Mat /** * <p>OpenCV C++ n-dimensional dense array class</p> * * <p>class CV_EXPORTS Mat <code></p> * * <p>// C++ code:</p> * * * <p>public:</p> * * <p>//... a lot of methods......</p> * * <p>/ *! includes several bit-fields:</p> * * <p>- the magic signature</p> * * <p>- continuity flag</p> * * <p>- depth</p> * * <p>- number of channels</p> * <ul> * <li> / * </ul> * * <p>int flags;</p> * * <p>//! the array dimensionality, >= 2</p> * * <p>int dims;</p> * * <p>//! the number of rows and columns or (-1, -1) when the array has more than 2 * dimensions</p> * * <p>int rows, cols;</p> * * <p>//! pointer to the data</p> * * <p>uchar* data;</p> * * <p>//! pointer to the reference counter;</p> * * <p>// when array points to user-allocated data, the pointer is NULL</p> * * <p>int* refcount;</p> * * <p>// other members...</p> * * <p>};</p> * * <p>The class <code>Mat</code> represents an n-dimensional dense numerical * single-channel or multi-channel array. It can be used to store real or * complex-valued vectors and matrices, grayscale or color images, voxel * volumes, vector fields, point clouds, tensors, histograms (though, very * high-dimensional histograms may be better stored in a <code>SparseMat</code>). * The data layout of the array </code></p> * * <p><em>M</em> is defined by the array <code>M.step[]</code>, so that the address * of element <em>(i_0,...,i_(M.dims-1))</em>, where <em>0 <= i_k<M.size[k]</em>, * is computed as:</p> * * <p><em>addr(M_(i_0,...,i_(M.dims-1))) = M.data + M.step[0]*i_0 + M.step[1]*i_1 * +... + M.step[M.dims-1]*i_(M.dims-1)</em></p> * * <p>In case of a 2-dimensional array, the above formula is reduced to:</p> * * <p><em>addr(M_(i,j)) = M.data + M.step[0]*i + M.step[1]*j</em></p> * * <p>Note that <code>M.step[i] >= M.step[i+1]</code> (in fact, <code>M.step[i] >= * M.step[i+1]*M.size[i+1]</code>). This means that 2-dimensional matrices are * stored row-by-row, 3-dimensional matrices are stored plane-by-plane, and so * on. <code>M.step[M.dims-1]</code> is minimal and always equal to the element * size <code>M.elemSize()</code>.</p> * * <p>So, the data layout in <code>Mat</code> is fully compatible with * <code>CvMat</code>, <code>IplImage</code>, and <code>CvMatND</code> types * from OpenCV 1.x. It is also compatible with the majority of dense array types * from the standard toolkits and SDKs, such as Numpy (ndarray), Win32 * (independent device bitmaps), and others, that is, with any array that uses * *steps* (or *strides*) to compute the position of a pixel. Due to this * compatibility, it is possible to make a <code>Mat</code> header for * user-allocated data and process it in-place using OpenCV functions.</p> * * <p>There are many different ways to create a <code>Mat</code> object. The most * popular options are listed below:</p> * <ul> * <li> Use the <code>create(nrows, ncols, type)</code> method or the similar * <code>Mat(nrows, ncols, type[, fillValue])</code> constructor. A new array of * the specified size and type is allocated. <code>type</code> has the same * meaning as in the <code>cvCreateMat</code> method. * </ul> * <p>For example, <code>CV_8UC1</code> means a 8-bit single-channel array, * <code>CV_32FC2</code> means a 2-channel (complex) floating-point array, and * so on.</p> * * <p><code></p> * * <p>// C++ code:</p> * * <p>// make a 7x7 complex matrix filled with 1+3j.</p> * * <p>Mat M(7,7,CV_32FC2,Scalar(1,3));</p> * * <p>// and now turn M to a 100x60 15-channel 8-bit matrix.</p> * * <p>// The old content will be deallocated</p> * * <p>M.create(100,60,CV_8UC(15));</p> * * <p></code></p> * * <p>As noted in the introduction to this chapter, <code>create()</code> allocates * only a new array when the shape or type of the current array are different * from the specified ones.</p> * <ul> * <li> Create a multi-dimensional array: * </ul> * * <p><code></p> * * <p>// C++ code:</p> * * <p>// create a 100x100x100 8-bit array</p> * * <p>int sz[] = {100, 100, 100};</p> * * <p>Mat bigCube(3, sz, CV_8U, Scalar.all(0));</p> * * <p></code></p> * * <p>It passes the number of dimensions =1 to the <code>Mat</code> constructor but * the created array will be 2-dimensional with the number of columns set to 1. * So, <code>Mat.dims</code> is always >= 2 (can also be 0 when the array is * empty).</p> * <ul> * <li> Use a copy constructor or assignment operator where there can be an * array or expression on the right side (see below). As noted in the * introduction, the array assignment is an O(1) operation because it only * copies the header and increases the reference counter. The <code>Mat.clone()</code> * method can be used to get a full (deep) copy of the array when you need it. * <li> Construct a header for a part of another array. It can be a single * row, single column, several rows, several columns, rectangular region in the * array (called a *minor* in algebra) or a diagonal. Such operations are also * O(1) because the new header references the same data. You can actually modify * a part of the array using this feature, for example: * </ul> * * <p><code></p> * * <p>// C++ code:</p> * * <p>// add the 5-th row, multiplied by 3 to the 3rd row</p> * * <p>M.row(3) = M.row(3) + M.row(5)*3;</p> * * <p>// now copy the 7-th column to the 1-st column</p> * * <p>// M.col(1) = M.col(7); // this will not work</p> * * <p>Mat M1 = M.col(1);</p> * * <p>M.col(7).copyTo(M1);</p> * * <p>// create a new 320x240 image</p> * * <p>Mat img(Size(320,240),CV_8UC3);</p> * * <p>// select a ROI</p> * * <p>Mat roi(img, Rect(10,10,100,100));</p> * * <p>// fill the ROI with (0,255,0) (which is green in RGB space);</p> * * <p>// the original 320x240 image will be modified</p> * * <p>roi = Scalar(0,255,0);</p> * * <p></code></p> * * <p>Due to the additional <code>datastart</code> and <code>dataend</code> * members, it is possible to compute a relative sub-array position in the main * *container* array using <code>locateROI()</code>:</p> * * <p><code></p> * * <p>// C++ code:</p> * * <p>Mat A = Mat.eye(10, 10, CV_32S);</p> * * <p>// extracts A columns, 1 (inclusive) to 3 (exclusive).</p> * * <p>Mat B = A(Range.all(), Range(1, 3));</p> * * <p>// extracts B rows, 5 (inclusive) to 9 (exclusive).</p> * * <p>// that is, C ~ A(Range(5, 9), Range(1, 3))</p> * * <p>Mat C = B(Range(5, 9), Range.all());</p> * * <p>Size size; Point ofs;</p> * * <p>C.locateROI(size, ofs);</p> * * <p>// size will be (width=10,height=10) and the ofs will be (x=1, y=5)</p> * * <p></code></p> * * <p>As in case of whole matrices, if you need a deep copy, use the * <code>clone()</code> method of the extracted sub-matrices.</p> * <ul> * <li> Make a header for user-allocated data. It can be useful to do the * following: * <li> Process "foreign" data using OpenCV (for example, when you implement a * DirectShow* filter or a processing module for <code>gstreamer</code>, and so * on). For example: * </ul> * * <p><code></p> * * <p>// C++ code:</p> * * <p>void process_video_frame(const unsigned char* pixels,</p> * * <p>int width, int height, int step)</p> * * * <p>Mat img(height, width, CV_8UC3, pixels, step);</p> * * <p>GaussianBlur(img, img, Size(7,7), 1.5, 1.5);</p> * * * <p></code></p> * <ul> * <li> Quickly initialize small matrices and/or get a super-fast element * access. * </ul> * * <p><code></p> * * <p>// C++ code:</p> * * <p>double m[3][3] = {{a, b, c}, {d, e, f}, {g, h, i}};</p> * * <p>Mat M = Mat(3, 3, CV_64F, m).inv();</p> * * <p></code></p> * * <p>Partial yet very common cases of this *user-allocated data* case are * conversions from <code>CvMat</code> and <code>IplImage</code> to * <code>Mat</code>. For this purpose, there are special constructors taking * pointers to <code>CvMat</code> or <code>IplImage</code> and the optional flag * indicating whether to copy the data or not.</p> * * <p>Backward conversion from <code>Mat</code> to <code>CvMat</code> or * <code>IplImage</code> is provided via cast operators <code>Mat.operator * CvMat() const</code> and <code>Mat.operator IplImage()</code>. The operators * do NOT copy the data.</p> * * <p><code></p> * * <p>// C++ code:</p> * * <p>IplImage* img = cvLoadImage("greatwave.jpg", 1);</p> * * <p>Mat mtx(img); // convert IplImage* -> Mat</p> * * <p>CvMat oldmat = mtx; // convert Mat -> CvMat</p> * * <p>CV_Assert(oldmat.cols == img->width && oldmat.rows == img->height &&</p> * * <p>oldmat.data.ptr == (uchar*)img->imageData && oldmat.step == img->widthStep);</p> * * <p></code></p> * <ul> * <li> Use MATLAB-style array initializers, <code>zeros(), ones(), * eye()</code>, for example: * </ul> * * <p><code></p> * * <p>// C++ code:</p> * * <p>// create a double-precision identity martix and add it to M.</p> * * <p>M += Mat.eye(M.rows, M.cols, CV_64F);</p> * * <p></code></p> * <ul> * <li> Use a comma-separated initializer: * </ul> * * <p><code></p> * * <p>// C++ code:</p> * * <p>// create a 3x3 double-precision identity matrix</p> * * <p>Mat M = (Mat_<double>(3,3) << 1, 0, 0, 0, 1, 0, 0, 0, 1);</p> * * <p></code></p> * * <p>With this approach, you first call a constructor of the "Mat_" class with the * proper parameters, and then you just put <code><<</code> operator followed by * comma-separated values that can be constants, variables, expressions, and so * on. Also, note the extra parentheses required to avoid compilation errors.</p> * * <p>Once the array is created, it is automatically managed via a * reference-counting mechanism. If the array header is built on top of * user-allocated data, you should handle the data by yourself. * The array data is deallocated when no one points to it. If you want to * release the data pointed by a array header before the array destructor is * called, use <code>Mat.release()</code>.</p> * * <p>The next important thing to learn about the array class is element access. * This manual already described how to compute an address of each array * element. Normally, you are not required to use the formula directly in the * code. If you know the array element type (which can be retrieved using the * method <code>Mat.type()</code>), you can access the element<em>M_(ij)</em> * of a 2-dimensional array as: <code></p> * * <p>// C++ code:</p> * * <p>M.at<double>(i,j) += 1.f;</p> * * <p>assuming that M is a double-precision floating-point array. There are several * variants of the method <code>at</code> for a different number of dimensions. * </code></p> * * <p>If you need to process a whole row of a 2D array, the most efficient way is * to get the pointer to the row first, and then just use the plain C operator * <code>[]</code> : <code></p> * * <p>// C++ code:</p> * * <p>// compute sum of positive matrix elements</p> * * <p>// (assuming that M isa double-precision matrix)</p> * * <p>double sum=0;</p> * * <p>for(int i = 0; i < M.rows; i++)</p> * * * <p>const double* Mi = M.ptr<double>(i);</p> * * <p>for(int j = 0; j < M.cols; j++)</p> * * <p>sum += std.max(Mi[j], 0.);</p> * * * <p>Some operations, like the one above, do not actually depend on the array * shape. They just process elements of an array one by one (or elements from * multiple arrays that have the same coordinates, for example, array addition). * Such operations are called *element-wise*. It makes sense to check whether * all the input/output arrays are continuous, namely, have no gaps at the end * of each row. If yes, process them as a long single row:</p> * * <p>// compute the sum of positive matrix elements, optimized variant</p> * * <p>double sum=0;</p> * * <p>int cols = M.cols, rows = M.rows;</p> * * <p>if(M.isContinuous())</p> * * * <p>cols *= rows;</p> * * <p>rows = 1;</p> * * * <p>for(int i = 0; i < rows; i++)</p> * * * <p>const double* Mi = M.ptr<double>(i);</p> * * <p>for(int j = 0; j < cols; j++)</p> * * <p>sum += std.max(Mi[j], 0.);</p> * * * <p>In case of the continuous matrix, the outer loop body is executed just once. * So, the overhead is smaller, which is especially noticeable in case of small * matrices. * </code></p> * * <p>Finally, there are STL-style iterators that are smart enough to skip gaps * between successive rows: <code></p> * * <p>// C++ code:</p> * * <p>// compute sum of positive matrix elements, iterator-based variant</p> * * <p>double sum=0;</p> * * <p>MatConstIterator_<double> it = M.begin<double>(), it_end = M.end<double>();</p> * * <p>for(; it != it_end; ++it)</p> * * <p>sum += std.max(*it, 0.);</p> * * <p>The matrix iterators are random-access iterators, so they can be passed to * any STL algorithm, including <code>std.sort()</code>. * </code></p> * * <p>Note:</p> * <ul> * <li> An example demonstrating the serial out capabilities of cv.Mat can be * found at opencv_source_code/samples/cpp/cout_mat.cpp * </ul> * * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat">org.opencv.core.Mat</a> */ public class Mat { public final long nativeObj; public Mat(long addr) { if (addr == 0) throw new java.lang.UnsupportedOperationException("Native object address is NULL"); nativeObj = addr; } // // C++: Mat::Mat() // /** * <p>Various Mat constructors</p> * * <p>These are various constructors that form a matrix. As noted in the * "AutomaticAllocation", often the default constructor is enough, and the * proper matrix will be allocated by an OpenCV function. The constructed matrix * can further be assigned to another matrix or matrix expression or can be * allocated with "Mat.create". In the former case, the old content is * de-referenced.</p> * * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-mat">org.opencv.core.Mat.Mat</a> */ public Mat() { nativeObj = n_Mat(); return; } // // C++: Mat::Mat(int rows, int cols, int type) // /** * <p>Various Mat constructors</p> * * <p>These are various constructors that form a matrix. As noted in the * "AutomaticAllocation", often the default constructor is enough, and the * proper matrix will be allocated by an OpenCV function. The constructed matrix * can further be assigned to another matrix or matrix expression or can be * allocated with "Mat.create". In the former case, the old content is * de-referenced.</p> * * @param rows Number of rows in a 2D array. * @param cols Number of columns in a 2D array. * @param type Array type. Use <code>CV_8UC1,..., CV_64FC4</code> to create 1-4 * channel matrices, or <code>CV_8UC(n),..., CV_64FC(n)</code> to create * multi-channel (up to <code>CV_CN_MAX</code> channels) matrices. * * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-mat">org.opencv.core.Mat.Mat</a> */ public Mat(int rows, int cols, int type) { nativeObj = n_Mat(rows, cols, type); return; } // // C++: Mat::Mat(Size size, int type) // /** * <p>Various Mat constructors</p> * * <p>These are various constructors that form a matrix. As noted in the * "AutomaticAllocation", often the default constructor is enough, and the * proper matrix will be allocated by an OpenCV function. The constructed matrix * can further be assigned to another matrix or matrix expression or can be * allocated with "Mat.create". In the former case, the old content is * de-referenced.</p> * * @param size 2D array size: <code>Size(cols, rows)</code>. In the * <code>Size()</code> constructor, the number of rows and the number of columns * go in the reverse order. * @param type Array type. Use <code>CV_8UC1,..., CV_64FC4</code> to create 1-4 * channel matrices, or <code>CV_8UC(n),..., CV_64FC(n)</code> to create * multi-channel (up to <code>CV_CN_MAX</code> channels) matrices. * * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-mat">org.opencv.core.Mat.Mat</a> */ public Mat(Size size, int type) { nativeObj = n_Mat(size.width, size.height, type); return; } // // C++: Mat::Mat(int rows, int cols, int type, Scalar s) // /** * <p>Various Mat constructors</p> * * <p>These are various constructors that form a matrix. As noted in the * "AutomaticAllocation", often the default constructor is enough, and the * proper matrix will be allocated by an OpenCV function. The constructed matrix * can further be assigned to another matrix or matrix expression or can be * allocated with "Mat.create". In the former case, the old content is * de-referenced.</p> * * @param rows Number of rows in a 2D array. * @param cols Number of columns in a 2D array. * @param type Array type. Use <code>CV_8UC1,..., CV_64FC4</code> to create 1-4 * channel matrices, or <code>CV_8UC(n),..., CV_64FC(n)</code> to create * multi-channel (up to <code>CV_CN_MAX</code> channels) matrices. * @param s An optional value to initialize each matrix element with. To set all * the matrix elements to the particular value after the construction, use the * assignment operator <code>Mat.operator=(const Scalar& value)</code>. * * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-mat">org.opencv.core.Mat.Mat</a> */ public Mat(int rows, int cols, int type, Scalar s) { nativeObj = n_Mat(rows, cols, type, s.val[0], s.val[1], s.val[2], s.val[3]); return; } // // C++: Mat::Mat(Size size, int type, Scalar s) // /** * <p>Various Mat constructors</p> * * <p>These are various constructors that form a matrix. As noted in the * "AutomaticAllocation", often the default constructor is enough, and the * proper matrix will be allocated by an OpenCV function. The constructed matrix * can further be assigned to another matrix or matrix expression or can be * allocated with "Mat.create". In the former case, the old content is * de-referenced.</p> * * @param size 2D array size: <code>Size(cols, rows)</code>. In the * <code>Size()</code> constructor, the number of rows and the number of columns * go in the reverse order. * @param type Array type. Use <code>CV_8UC1,..., CV_64FC4</code> to create 1-4 * channel matrices, or <code>CV_8UC(n),..., CV_64FC(n)</code> to create * multi-channel (up to <code>CV_CN_MAX</code> channels) matrices. * @param s An optional value to initialize each matrix element with. To set all * the matrix elements to the particular value after the construction, use the * assignment operator <code>Mat.operator=(const Scalar& value)</code>. * * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-mat">org.opencv.core.Mat.Mat</a> */ public Mat(Size size, int type, Scalar s) { nativeObj = n_Mat(size.width, size.height, type, s.val[0], s.val[1], s.val[2], s.val[3]); return; } // // C++: Mat::Mat(Mat m, Range rowRange, Range colRange = Range::all()) // /** * <p>Various Mat constructors</p> * * <p>These are various constructors that form a matrix. As noted in the * "AutomaticAllocation", often the default constructor is enough, and the * proper matrix will be allocated by an OpenCV function. The constructed matrix * can further be assigned to another matrix or matrix expression or can be * allocated with "Mat.create". In the former case, the old content is * de-referenced.</p> * * @param m Array that (as a whole or partly) is assigned to the constructed * matrix. No data is copied by these constructors. Instead, the header pointing * to <code>m</code> data or its sub-array is constructed and associated with * it. The reference counter, if any, is incremented. So, when you modify the * matrix formed using such a constructor, you also modify the corresponding * elements of <code>m</code>. If you want to have an independent copy of the * sub-array, use <code>Mat.clone()</code>. * @param rowRange Range of the <code>m</code> rows to take. As usual, the range * start is inclusive and the range end is exclusive. Use <code>Range.all()</code> * to take all the rows. * @param colRange Range of the <code>m</code> columns to take. Use * <code>Range.all()</code> to take all the columns. * * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-mat">org.opencv.core.Mat.Mat</a> */ public Mat(Mat m, Range rowRange, Range colRange) { nativeObj = n_Mat(m.nativeObj, rowRange.start, rowRange.end, colRange.start, colRange.end); return; } /** * <p>Various Mat constructors</p> * * <p>These are various constructors that form a matrix. As noted in the * "AutomaticAllocation", often the default constructor is enough, and the * proper matrix will be allocated by an OpenCV function. The constructed matrix * can further be assigned to another matrix or matrix expression or can be * allocated with "Mat.create". In the former case, the old content is * de-referenced.</p> * * @param m Array that (as a whole or partly) is assigned to the constructed * matrix. No data is copied by these constructors. Instead, the header pointing * to <code>m</code> data or its sub-array is constructed and associated with * it. The reference counter, if any, is incremented. So, when you modify the * matrix formed using such a constructor, you also modify the corresponding * elements of <code>m</code>. If you want to have an independent copy of the * sub-array, use <code>Mat.clone()</code>. * @param rowRange Range of the <code>m</code> rows to take. As usual, the range * start is inclusive and the range end is exclusive. Use <code>Range.all()</code> * to take all the rows. * * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-mat">org.opencv.core.Mat.Mat</a> */ public Mat(Mat m, Range rowRange) { nativeObj = n_Mat(m.nativeObj, rowRange.start, rowRange.end); return; } // // C++: Mat::Mat(Mat m, Rect roi) // /** * <p>Various Mat constructors</p> * * <p>These are various constructors that form a matrix. As noted in the * "AutomaticAllocation", often the default constructor is enough, and the * proper matrix will be allocated by an OpenCV function. The constructed matrix * can further be assigned to another matrix or matrix expression or can be * allocated with "Mat.create". In the former case, the old content is * de-referenced.</p> * * @param m Array that (as a whole or partly) is assigned to the constructed * matrix. No data is copied by these constructors. Instead, the header pointing * to <code>m</code> data or its sub-array is constructed and associated with * it. The reference counter, if any, is incremented. So, when you modify the * matrix formed using such a constructor, you also modify the corresponding * elements of <code>m</code>. If you want to have an independent copy of the * sub-array, use <code>Mat.clone()</code>. * @param roi Region of interest. * * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-mat">org.opencv.core.Mat.Mat</a> */ public Mat(Mat m, Rect roi) { nativeObj = n_Mat(m.nativeObj, roi.y, roi.y + roi.height, roi.x, roi.x + roi.width); return; } // // C++: Mat Mat::adjustROI(int dtop, int dbottom, int dleft, int dright) // /** * <p>Adjusts a submatrix size and position within the parent matrix.</p> * * <p>The method is complimentary to"Mat.locateROI". The typical use of these * functions is to determine the submatrix position within the parent matrix and * then shift the position somehow. Typically, it can be required for filtering * operations when pixels outside of the ROI should be taken into account. When * all the method parameters are positive, the ROI needs to grow in all * directions by the specified amount, for example: <code></p> * * <p>// C++ code:</p> * * <p>A.adjustROI(2, 2, 2, 2);</p> * * <p>In this example, the matrix size is increased by 4 elements in each * direction. The matrix is shifted by 2 elements to the left and 2 elements up, * which brings in all the necessary pixels for the filtering with the 5x5 * kernel. * </code></p> * * <p><code>adjustROI</code> forces the adjusted ROI to be inside of the parent * matrix that is boundaries of the adjusted ROI are constrained by boundaries * of the parent matrix. For example, if the submatrix <code>A</code> is located * in the first row of a parent matrix and you called <code>A.adjustROI(2, 2, 2, * 2)</code> then <code>A</code> will not be increased in the upward direction.</p> * * <p>The function is used internally by the OpenCV filtering functions, like * "filter2D", morphological operations, and so on.</p> * * @param dtop Shift of the top submatrix boundary upwards. * @param dbottom Shift of the bottom submatrix boundary downwards. * @param dleft Shift of the left submatrix boundary to the left. * @param dright Shift of the right submatrix boundary to the right. * * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-adjustroi">org.opencv.core.Mat.adjustROI</a> * @see org.opencv.imgproc.Imgproc#copyMakeBorder */ public Mat adjustROI(int dtop, int dbottom, int dleft, int dright) { Mat retVal = new Mat(n_adjustROI(nativeObj, dtop, dbottom, dleft, dright)); return retVal; } // // C++: void Mat::assignTo(Mat m, int type = -1) // /** * <p>Provides a functional form of <code>convertTo</code>.</p> * * <p>This is an internally used method called by the "MatrixExpressions" engine.</p> * * @param m Destination array. * @param type Desired destination array depth (or -1 if it should be the same * as the source type). * * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-assignto">org.opencv.core.Mat.assignTo</a> */ public void assignTo(Mat m, int type) { n_assignTo(nativeObj, m.nativeObj, type); return; } /** * <p>Provides a functional form of <code>convertTo</code>.</p> * * <p>This is an internally used method called by the "MatrixExpressions" engine.</p> * * @param m Destination array. * * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-assignto">org.opencv.core.Mat.assignTo</a> */ public void assignTo(Mat m) { n_assignTo(nativeObj, m.nativeObj); return; } // // C++: int Mat::channels() // /** * <p>Returns the number of matrix channels.</p> * * <p>The method returns the number of matrix channels.</p> * * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-channels">org.opencv.core.Mat.channels</a> */ public int channels() { int retVal = n_channels(nativeObj); return retVal; } // // C++: int Mat::checkVector(int elemChannels, int depth = -1, bool // requireContinuous = true) // public int checkVector(int elemChannels, int depth, boolean requireContinuous) { int retVal = n_checkVector(nativeObj, elemChannels, depth, requireContinuous); return retVal; } public int checkVector(int elemChannels, int depth) { int retVal = n_checkVector(nativeObj, elemChannels, depth); return retVal; } public int checkVector(int elemChannels) { int retVal = n_checkVector(nativeObj, elemChannels); return retVal; } // // C++: Mat Mat::clone() // /** * <p>Creates a full copy of the array and the underlying data.</p> * * <p>The method creates a full copy of the array. The original <code>step[]</code> * is not taken into account. So, the array copy is a continuous array occupying * <code>total()*elemSize()</code> bytes.</p> * * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-clone">org.opencv.core.Mat.clone</a> */ public Mat clone() { Mat retVal = new Mat(n_clone(nativeObj)); return retVal; } // // C++: Mat Mat::col(int x) // /** * <p>Creates a matrix header for the specified matrix column.</p> * * <p>The method makes a new header for the specified matrix column and returns it. * This is an O(1) operation, regardless of the matrix size. The underlying data * of the new matrix is shared with the original matrix. See also the "Mat.row" * description.</p> * * @param x A 0-based column index. * * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-col">org.opencv.core.Mat.col</a> */ public Mat col(int x) { Mat retVal = new Mat(n_col(nativeObj, x)); return retVal; } // // C++: Mat Mat::colRange(int startcol, int endcol) // /** * <p>Creates a matrix header for the specified column span.</p> * * <p>The method makes a new header for the specified column span of the matrix. * Similarly to "Mat.row" and "Mat.col", this is an O(1) operation.</p> * * @param startcol An inclusive 0-based start index of the column span. * @param endcol An exclusive 0-based ending index of the column span. * * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-colrange">org.opencv.core.Mat.colRange</a> */ public Mat colRange(int startcol, int endcol) { Mat retVal = new Mat(n_colRange(nativeObj, startcol, endcol)); return retVal; } // // C++: Mat Mat::colRange(Range r) // /** * <p>Creates a matrix header for the specified column span.</p> * * <p>The method makes a new header for the specified column span of the matrix. * Similarly to "Mat.row" and "Mat.col", this is an O(1) operation.</p> * * @param r "Range" structure containing both the start and the end indices. * * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-colrange">org.opencv.core.Mat.colRange</a> */ public Mat colRange(Range r) { Mat retVal = new Mat(n_colRange(nativeObj, r.start, r.end)); return retVal; } // // C++: int Mat::dims() // public int dims() { int retVal = n_dims(nativeObj); return retVal; } // // C++: int Mat::cols() // public int cols() { int retVal = n_cols(nativeObj); return retVal; } // // C++: void Mat::convertTo(Mat& m, int rtype, double alpha = 1, double beta // = 0) // /** * <p>Converts an array to another data type with optional scaling.</p> * * <p>The method converts source pixel values to the target data type. * <code>saturate_cast<></code> is applied at the end to avoid possible * overflows:</p> * * <p><em>m(x,y) = saturate _ cast<rType>(alpha(*this)(x,y) + beta)</em></p> * * @param m output matrix; if it does not have a proper size or type before the * operation, it is reallocated. * @param rtype desired output matrix type or, rather, the depth since the * number of channels are the same as the input has; if <code>rtype</code> is * negative, the output matrix will have the same type as the input. * @param alpha optional scale factor. * @param beta optional delta added to the scaled values. * * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-convertto">org.opencv.core.Mat.convertTo</a> */ public void convertTo(Mat m, int rtype, double alpha, double beta) { n_convertTo(nativeObj, m.nativeObj, rtype, alpha, beta); return; } /** * <p>Converts an array to another data type with optional scaling.</p> * * <p>The method converts source pixel values to the target data type. * <code>saturate_cast<></code> is applied at the end to avoid possible * overflows:</p> * * <p><em>m(x,y) = saturate _ cast<rType>(alpha(*this)(x,y) + beta)</em></p> * * @param m output matrix; if it does not have a proper size or type before the * operation, it is reallocated. * @param rtype desired output matrix type or, rather, the depth since the * number of channels are the same as the input has; if <code>rtype</code> is * negative, the output matrix will have the same type as the input. * @param alpha optional scale factor. * * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-convertto">org.opencv.core.Mat.convertTo</a> */ public void convertTo(Mat m, int rtype, double alpha) { n_convertTo(nativeObj, m.nativeObj, rtype, alpha); return; } /** * <p>Converts an array to another data type with optional scaling.</p> * * <p>The method converts source pixel values to the target data type. * <code>saturate_cast<></code> is applied at the end to avoid possible * overflows:</p> * * <p><em>m(x,y) = saturate _ cast<rType>(alpha(*this)(x,y) + beta)</em></p> * * @param m output matrix; if it does not have a proper size or type before the * operation, it is reallocated. * @param rtype desired output matrix type or, rather, the depth since the * number of channels are the same as the input has; if <code>rtype</code> is * negative, the output matrix will have the same type as the input. * * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-convertto">org.opencv.core.Mat.convertTo</a> */ public void convertTo(Mat m, int rtype) { n_convertTo(nativeObj, m.nativeObj, rtype); return; } // // C++: void Mat::copyTo(Mat& m) // /** * <p>Copies the matrix to another one.</p> * * <p>The method copies the matrix data to another matrix. Before copying the data, * the method invokes <code></p> * * <p>// C++ code:</p> * * <p>m.create(this->size(), this->type());</p> * * <p>so that the destination matrix is reallocated if needed. While * <code>m.copyTo(m);</code> works flawlessly, the function does not handle the * case of a partial overlap between the source and the destination matrices. * </code></p> * * <p>When the operation mask is specified, if the <code>Mat.create</code> call * shown above reallocates the matrix, the newly allocated matrix is initialized * with all zeros before copying the data.</p> * * @param m Destination matrix. If it does not have a proper size or type before * the operation, it is reallocated. * * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-copyto">org.opencv.core.Mat.copyTo</a> */ public void copyTo(Mat m) { n_copyTo(nativeObj, m.nativeObj); return; } // // C++: void Mat::copyTo(Mat& m, Mat mask) // /** * <p>Copies the matrix to another one.</p> * * <p>The method copies the matrix data to another matrix. Before copying the data, * the method invokes <code></p> * * <p>// C++ code:</p> * * <p>m.create(this->size(), this->type());</p> * * <p>so that the destination matrix is reallocated if needed. While * <code>m.copyTo(m);</code> works flawlessly, the function does not handle the * case of a partial overlap between the source and the destination matrices. * </code></p> * * <p>When the operation mask is specified, if the <code>Mat.create</code> call * shown above reallocates the matrix, the newly allocated matrix is initialized * with all zeros before copying the data.</p> * * @param m Destination matrix. If it does not have a proper size or type before * the operation, it is reallocated. * @param mask Operation mask. Its non-zero elements indicate which matrix * elements need to be copied. * * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-copyto">org.opencv.core.Mat.copyTo</a> */ public void copyTo(Mat m, Mat mask) { n_copyTo(nativeObj, m.nativeObj, mask.nativeObj); return; } // // C++: void Mat::create(int rows, int cols, int type) // /** * <p>Allocates new array data if needed.</p> * * <p>This is one of the key <code>Mat</code> methods. Most new-style OpenCV * functions and methods that produce arrays call this method for each output * array. The method uses the following algorithm:</p> * <ul> * <li> If the current array shape and the type match the new ones, return * immediately. Otherwise, de-reference the previous data by calling * "Mat.release". * <li> Initialize the new header. * <li> Allocate the new data of <code>total()*elemSize()</code> bytes. * <li> Allocate the new, associated with the data, reference counter and set * it to 1. * </ul> * <p>Such a scheme makes the memory management robust and efficient at the same * time and helps avoid extra typing for you. This means that usually there is * no need to explicitly allocate output arrays. That is, instead of writing: * <code></p> * * <p>// C++ code:</p> * * <p>Mat color;...</p> * * <p>Mat gray(color.rows, color.cols, color.depth());</p> * * <p>cvtColor(color, gray, CV_BGR2GRAY);</p> * * <p>you can simply write:</p> * * <p>Mat color;...</p> * * <p>Mat gray;</p> * * <p>cvtColor(color, gray, CV_BGR2GRAY);</p> * * <p>because <code>cvtColor</code>, as well as the most of OpenCV functions, calls * <code>Mat.create()</code> for the output array internally. * </code></p> * * @param rows New number of rows. * @param cols New number of columns. * @param type New matrix type. * * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-create">org.opencv.core.Mat.create</a> */ public void create(int rows, int cols, int type) { n_create(nativeObj, rows, cols, type); return; } // // C++: void Mat::create(Size size, int type) // /** * <p>Allocates new array data if needed.</p> * * <p>This is one of the key <code>Mat</code> methods. Most new-style OpenCV * functions and methods that produce arrays call this method for each output * array. The method uses the following algorithm:</p> * <ul> * <li> If the current array shape and the type match the new ones, return * immediately. Otherwise, de-reference the previous data by calling * "Mat.release". * <li> Initialize the new header. * <li> Allocate the new data of <code>total()*elemSize()</code> bytes. * <li> Allocate the new, associated with the data, reference counter and set * it to 1. * </ul> * <p>Such a scheme makes the memory management robust and efficient at the same * time and helps avoid extra typing for you. This means that usually there is * no need to explicitly allocate output arrays. That is, instead of writing: * <code></p> * * <p>// C++ code:</p> * * <p>Mat color;...</p> * * <p>Mat gray(color.rows, color.cols, color.depth());</p> * * <p>cvtColor(color, gray, CV_BGR2GRAY);</p> * * <p>you can simply write:</p> * * <p>Mat color;...</p> * * <p>Mat gray;</p> * * <p>cvtColor(color, gray, CV_BGR2GRAY);</p> * * <p>because <code>cvtColor</code>, as well as the most of OpenCV functions, calls * <code>Mat.create()</code> for the output array internally. * </code></p> * * @param size Alternative new matrix size specification: <code>Size(cols, * rows)</code> * @param type New matrix type. * * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-create">org.opencv.core.Mat.create</a> */ public void create(Size size, int type) { n_create(nativeObj, size.width, size.height, type); return; } // // C++: Mat Mat::cross(Mat m) // /** * <p>Computes a cross-product of two 3-element vectors.</p> * * <p>The method computes a cross-product of two 3-element vectors. The vectors * must be 3-element floating-point vectors of the same shape and size. The * result is another 3-element vector of the same shape and type as operands.</p> * * @param m Another cross-product operand. * * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-cross">org.opencv.core.Mat.cross</a> */ public Mat cross(Mat m) { Mat retVal = new Mat(n_cross(nativeObj, m.nativeObj)); return retVal; } // // C++: long Mat::dataAddr() // public long dataAddr() { long retVal = n_dataAddr(nativeObj); return retVal; } // // C++: int Mat::depth() // /** * <p>Returns the depth of a matrix element.</p> * * <p>The method returns the identifier of the matrix element depth (the type of * each individual channel). For example, for a 16-bit signed element array, the * method returns <code>CV_16S</code>. A complete list of matrix types contains * the following values:</p> * <ul> * <li> <code>CV_8U</code> - 8-bit unsigned integers (<code>0..255</code>) * <li> <code>CV_8S</code> - 8-bit signed integers (<code>-128..127</code>) * <li> <code>CV_16U</code> - 16-bit unsigned integers (<code>0..65535</code>) * <li> <code>CV_16S</code> - 16-bit signed integers (<code>-32768..32767</code>) * <li> <code>CV_32S</code> - 32-bit signed integers (<code>-2147483648..2147483647</code>) * <li> <code>CV_32F</code> - 32-bit floating-point numbers (<code>-FLT_MAX..FLT_MAX, * INF, NAN</code>) * <li> <code>CV_64F</code> - 64-bit floating-point numbers (<code>-DBL_MAX..DBL_MAX, * INF, NAN</code>) * </ul> * * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-depth">org.opencv.core.Mat.depth</a> */ public int depth() { int retVal = n_depth(nativeObj); return retVal; } // // C++: Mat Mat::diag(int d = 0) // /** * <p>Extracts a diagonal from a matrix, or creates a diagonal matrix.</p> * * <p>The method makes a new header for the specified matrix diagonal. The new * matrix is represented as a single-column matrix. Similarly to "Mat.row" and * "Mat.col", this is an O(1) operation.</p> * * @param d Single-column matrix that forms a diagonal matrix or index of the * diagonal, with the following values: * <ul> * <li> d=0 is the main diagonal. * <li> d>0 is a diagonal from the lower half. For example, <code>d=1</code> * means the diagonal is set immediately below the main one. * <li> d<0 is a diagonal from the upper half. For example, <code>d=1</code> * means the diagonal is set immediately above the main one. * </ul> * * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-diag">org.opencv.core.Mat.diag</a> */ public Mat diag(int d) { Mat retVal = new Mat(n_diag(nativeObj, d)); return retVal; } /** * <p>Extracts a diagonal from a matrix, or creates a diagonal matrix.</p> * * <p>The method makes a new header for the specified matrix diagonal. The new * matrix is represented as a single-column matrix. Similarly to "Mat.row" and * "Mat.col", this is an O(1) operation.</p> * * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-diag">org.opencv.core.Mat.diag</a> */ public Mat diag() { Mat retVal = new Mat(n_diag(nativeObj, 0)); return retVal; } // // C++: static Mat Mat::diag(Mat d) // /** * <p>Extracts a diagonal from a matrix, or creates a diagonal matrix.</p> * * <p>The method makes a new header for the specified matrix diagonal. The new * matrix is represented as a single-column matrix. Similarly to "Mat.row" and * "Mat.col", this is an O(1) operation.</p> * * @param d Single-column matrix that forms a diagonal matrix or index of the * diagonal, with the following values: * <ul> * <li> d=0 is the main diagonal. * <li> d>0 is a diagonal from the lower half. For example, <code>d=1</code> * means the diagonal is set immediately below the main one. * <li> d<0 is a diagonal from the upper half. For example, <code>d=1</code> * means the diagonal is set immediately above the main one. * </ul> * * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-diag">org.opencv.core.Mat.diag</a> */ public static Mat diag(Mat d) { Mat retVal = new Mat(n_diag(d.nativeObj)); return retVal; } // // C++: double Mat::dot(Mat m) // /** * <p>Computes a dot-product of two vectors.</p> * * <p>The method computes a dot-product of two matrices. If the matrices are not * single-column or single-row vectors, the top-to-bottom left-to-right scan * ordering is used to treat them as 1D vectors. The vectors must have the same * size and type. If the matrices have more than one channel, the dot products * from all the channels are summed together.</p> * * @param m another dot-product operand. * * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-dot">org.opencv.core.Mat.dot</a> */ public double dot(Mat m) { double retVal = n_dot(nativeObj, m.nativeObj); return retVal; } // // C++: size_t Mat::elemSize() // /** * <p>Returns the matrix element size in bytes.</p> * * <p>The method returns the matrix element size in bytes. For example, if the * matrix type is <code>CV_16SC3</code>, the method returns <code>3*sizeof(short)</code> * or 6.</p> * * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-elemsize">org.opencv.core.Mat.elemSize</a> */ public long elemSize() { long retVal = n_elemSize(nativeObj); return retVal; } // // C++: size_t Mat::elemSize1() // /** * <p>Returns the size of each matrix element channel in bytes.</p> * * <p>The method returns the matrix element channel size in bytes, that is, it * ignores the number of channels. For example, if the matrix type is * <code>CV_16SC3</code>, the method returns <code>sizeof(short)</code> or 2.</p> * * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-elemsize1">org.opencv.core.Mat.elemSize1</a> */ public long elemSize1() { long retVal = n_elemSize1(nativeObj); return retVal; } // // C++: bool Mat::empty() // /** * <p>Returns <code>true</code> if the array has no elements.</p> * * <p>The method returns <code>true</code> if <code>Mat.total()</code> is 0 or if * <code>Mat.data</code> is NULL. Because of <code>pop_back()</code> and * <code>resize()</code> methods <code>M.total() == 0</code> does not imply that * <code>M.data == NULL</code>.</p> * * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-empty">org.opencv.core.Mat.empty</a> */ public boolean empty() { boolean retVal = n_empty(nativeObj); return retVal; } // // C++: static Mat Mat::eye(int rows, int cols, int type) // /** * <p>Returns an identity matrix of the specified size and type.</p> * * <p>The method returns a Matlab-style identity matrix initializer, similarly to * "Mat.zeros". Similarly to"Mat.ones", you can use a scale operation to * create a scaled identity matrix efficiently: <code></p> * * <p>// C++ code:</p> * * <p>// make a 4x4 diagonal matrix with 0.1's on the diagonal.</p> * * <p>Mat A = Mat.eye(4, 4, CV_32F)*0.1;</p> * * @param rows Number of rows. * @param cols Number of columns. * @param type Created matrix type. * * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-eye">org.opencv.core.Mat.eye</a> */ public static Mat eye(int rows, int cols, int type) { Mat retVal = new Mat(n_eye(rows, cols, type)); return retVal; } // // C++: static Mat Mat::eye(Size size, int type) // /** * <p>Returns an identity matrix of the specified size and type.</p> * * <p>The method returns a Matlab-style identity matrix initializer, similarly to * "Mat.zeros". Similarly to"Mat.ones", you can use a scale operation to * create a scaled identity matrix efficiently: <code></p> * * <p>// C++ code:</p> * * <p>// make a 4x4 diagonal matrix with 0.1's on the diagonal.</p> * * <p>Mat A = Mat.eye(4, 4, CV_32F)*0.1;</p> * * @param size Alternative matrix size specification as <code>Size(cols, * rows)</code>. * @param type Created matrix type. * * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-eye">org.opencv.core.Mat.eye</a> */ public static Mat eye(Size size, int type) { Mat retVal = new Mat(n_eye(size.width, size.height, type)); return retVal; } // // C++: Mat Mat::inv(int method = DECOMP_LU) // /** * <p>Inverses a matrix.</p> * * <p>The method performs a matrix inversion by means of matrix expressions. This * means that a temporary matrix inversion object is returned by the method and * can be used further as a part of more complex matrix expressions or can be * assigned to a matrix.</p> * * @param method Matrix inversion method. Possible values are the following: * <ul> * <li> DECOMP_LU is the LU decomposition. The matrix must be non-singular. * <li> DECOMP_CHOLESKY is the Cholesky <em>LL^T</em> decomposition for * symmetrical positively defined matrices only. This type is about twice faster * than LU on big matrices. * <li> DECOMP_SVD is the SVD decomposition. If the matrix is singular or even * non-square, the pseudo inversion is computed. * </ul> * * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-inv">org.opencv.core.Mat.inv</a> */ public Mat inv(int method) { Mat retVal = new Mat(n_inv(nativeObj, method)); return retVal; } /** * <p>Inverses a matrix.</p> * * <p>The method performs a matrix inversion by means of matrix expressions. This * means that a temporary matrix inversion object is returned by the method and * can be used further as a part of more complex matrix expressions or can be * assigned to a matrix.</p> * * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-inv">org.opencv.core.Mat.inv</a> */ public Mat inv() { Mat retVal = new Mat(n_inv(nativeObj)); return retVal; } // // C++: bool Mat::isContinuous() // /** * <p>Reports whether the matrix is continuous or not.</p> * * <p>The method returns <code>true</code> if the matrix elements are stored * continuously without gaps at the end of each row. Otherwise, it returns * <code>false</code>. Obviously, <code>1x1</code> or <code>1xN</code> matrices * are always continuous. Matrices created with "Mat.create" are always * continuous. But if you extract a part of the matrix using "Mat.col", * "Mat.diag", and so on, or constructed a matrix header for externally * allocated data, such matrices may no longer have this property. * The continuity flag is stored as a bit in the <code>Mat.flags</code> field * and is computed automatically when you construct a matrix header. Thus, the * continuity check is a very fast operation, though theoretically it could be * done as follows: <code></p> * * <p>// C++ code:</p> * * <p>// alternative implementation of Mat.isContinuous()</p> * * <p>bool myCheckMatContinuity(const Mat& m)</p> * * * <p>//return (m.flags & Mat.CONTINUOUS_FLAG) != 0;</p> * * <p>return m.rows == 1 || m.step == m.cols*m.elemSize();</p> * * * <p>The method is used in quite a few of OpenCV functions. The point is that * element-wise operations (such as arithmetic and logical operations, math * functions, alpha blending, color space transformations, and others) do not * depend on the image geometry. Thus, if all the input and output arrays are * continuous, the functions can process them as very long single-row vectors. * The example below illustrates how an alpha-blending function can be * implemented.</p> * * <p>template<typename T></p> * * <p>void alphaBlendRGBA(const Mat& src1, const Mat& src2, Mat& dst)</p> * * * <p>const float alpha_scale = (float)std.numeric_limits<T>.max(),</p> * * <p>inv_scale = 1.f/alpha_scale;</p> * * <p>CV_Assert(src1.type() == src2.type() &&</p> * * <p>src1.type() == CV_MAKETYPE(DataType<T>.depth, 4) &&</p> * * <p>src1.size() == src2.size());</p> * * <p>Size size = src1.size();</p> * * <p>dst.create(size, src1.type());</p> * * <p>// here is the idiom: check the arrays for continuity and,</p> * * <p>// if this is the case,</p> * * <p>// treat the arrays as 1D vectors</p> * * <p>if(src1.isContinuous() && src2.isContinuous() && dst.isContinuous())</p> * * * <p>size.width *= size.height;</p> * * <p>size.height = 1;</p> * * * <p>size.width *= 4;</p> * * <p>for(int i = 0; i < size.height; i++)</p> * * * <p>// when the arrays are continuous,</p> * * <p>// the outer loop is executed only once</p> * * <p>const T* ptr1 = src1.ptr<T>(i);</p> * * <p>const T* ptr2 = src2.ptr<T>(i);</p> * * <p>T* dptr = dst.ptr<T>(i);</p> * * <p>for(int j = 0; j < size.width; j += 4)</p> * * * <p>float alpha = ptr1[j+3]*inv_scale, beta = ptr2[j+3]*inv_scale;</p> * * <p>dptr[j] = saturate_cast<T>(ptr1[j]*alpha + ptr2[j]*beta);</p> * * <p>dptr[j+1] = saturate_cast<T>(ptr1[j+1]*alpha + ptr2[j+1]*beta);</p> * * <p>dptr[j+2] = saturate_cast<T>(ptr1[j+2]*alpha + ptr2[j+2]*beta);</p> * * <p>dptr[j+3] = saturate_cast<T>((1 - (1-alpha)*(1-beta))*alpha_scale);</p> * * * * * <p>This approach, while being very simple, can boost the performance of a simple * element-operation by 10-20 percents, especially if the image is rather small * and the operation is quite simple. * </code></p> * * <p>Another OpenCV idiom in this function, a call of "Mat.create" for the * destination array, that allocates the destination array unless it already has * the proper size and type. And while the newly allocated arrays are always * continuous, you still need to check the destination array because * "Mat.create" does not always allocate a new matrix.</p> * * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-iscontinuous">org.opencv.core.Mat.isContinuous</a> */ public boolean isContinuous() { boolean retVal = n_isContinuous(nativeObj); return retVal; } // // C++: bool Mat::isSubmatrix() // public boolean isSubmatrix() { boolean retVal = n_isSubmatrix(nativeObj); return retVal; } // // C++: void Mat::locateROI(Size wholeSize, Point ofs) // /** * <p>Locates the matrix header within a parent matrix.</p> * * <p>After you extracted a submatrix from a matrix using "Mat.row", "Mat.col", * "Mat.rowRange", "Mat.colRange", and others, the resultant submatrix points * just to the part of the original big matrix. However, each submatrix contains * information (represented by <code>datastart</code> and <code>dataend</code> * fields) that helps reconstruct the original matrix size and the position of * the extracted submatrix within the original matrix. The method * <code>locateROI</code> does exactly that.</p> * * @param wholeSize Output parameter that contains the size of the whole matrix * containing <code>*this</code> as a part. * @param ofs Output parameter that contains an offset of <code>*this</code> * inside the whole matrix. * * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-locateroi">org.opencv.core.Mat.locateROI</a> */ public void locateROI(Size wholeSize, Point ofs) { double[] wholeSize_out = new double[2]; double[] ofs_out = new double[2]; locateROI_0(nativeObj, wholeSize_out, ofs_out); if(wholeSize!=null){ wholeSize.width = wholeSize_out[0]; wholeSize.height = wholeSize_out[1]; } if(ofs!=null){ ofs.x = ofs_out[0]; ofs.y = ofs_out[1]; } return; } // // C++: Mat Mat::mul(Mat m, double scale = 1) // /** * <p>Performs an element-wise multiplication or division of the two matrices.</p> * * <p>The method returns a temporary object encoding per-element array * multiplication, with optional scale. Note that this is not a matrix * multiplication that corresponds to a simpler "*" operator. * Example: <code></p> * * <p>// C++ code:</p> * * <p>Mat C = A.mul(5/B); // equivalent to divide(A, B, C, 5)</p> * * @param m Another array of the same type and the same size as * <code>*this</code>, or a matrix expression. * @param scale Optional scale factor. * * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-mul">org.opencv.core.Mat.mul</a> */ public Mat mul(Mat m, double scale) { Mat retVal = new Mat(n_mul(nativeObj, m.nativeObj, scale)); return retVal; } /** * <p>Performs an element-wise multiplication or division of the two matrices.</p> * * <p>The method returns a temporary object encoding per-element array * multiplication, with optional scale. Note that this is not a matrix * multiplication that corresponds to a simpler "*" operator. * Example: <code></p> * * <p>// C++ code:</p> * * <p>Mat C = A.mul(5/B); // equivalent to divide(A, B, C, 5)</p> * * @param m Another array of the same type and the same size as * <code>*this</code>, or a matrix expression. * * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-mul">org.opencv.core.Mat.mul</a> */ public Mat mul(Mat m) { Mat retVal = new Mat(n_mul(nativeObj, m.nativeObj)); return retVal; } // // C++: static Mat Mat::ones(int rows, int cols, int type) // /** * <p>Returns an array of all 1's of the specified size and type.</p> * * <p>The method returns a Matlab-style 1's array initializer, similarly * to"Mat.zeros". Note that using this method you can initialize an array with * an arbitrary value, using the following Matlab idiom: <code></p> * * <p>// C++ code:</p> * * <p>Mat A = Mat.ones(100, 100, CV_8U)*3; // make 100x100 matrix filled with 3.</p> * * <p>The above operation does not form a 100x100 matrix of 1's and then multiply * it by 3. Instead, it just remembers the scale factor (3 in this case) and use * it when actually invoking the matrix initializer. * </code></p> * * @param rows Number of rows. * @param cols Number of columns. * @param type Created matrix type. * * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-ones">org.opencv.core.Mat.ones</a> */ public static Mat ones(int rows, int cols, int type) { Mat retVal = new Mat(n_ones(rows, cols, type)); return retVal; } // // C++: static Mat Mat::ones(Size size, int type) // /** * <p>Returns an array of all 1's of the specified size and type.</p> * * <p>The method returns a Matlab-style 1's array initializer, similarly * to"Mat.zeros". Note that using this method you can initialize an array with * an arbitrary value, using the following Matlab idiom: <code></p> * * <p>// C++ code:</p> * * <p>Mat A = Mat.ones(100, 100, CV_8U)*3; // make 100x100 matrix filled with 3.</p> * * <p>The above operation does not form a 100x100 matrix of 1's and then multiply * it by 3. Instead, it just remembers the scale factor (3 in this case) and use * it when actually invoking the matrix initializer. * </code></p> * * @param size Alternative to the matrix size specification <code>Size(cols, * rows)</code>. * @param type Created matrix type. * * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-ones">org.opencv.core.Mat.ones</a> */ public static Mat ones(Size size, int type) { Mat retVal = new Mat(n_ones(size.width, size.height, type)); return retVal; } // // C++: void Mat::push_back(Mat m) // /** * <p>Adds elements to the bottom of the matrix.</p> * * <p>The methods add one or more elements to the bottom of the matrix. They * emulate the corresponding method of the STL vector class. When * <code>elem</code> is <code>Mat</code>, its type and the number of columns * must be the same as in the container matrix.</p> * * @param m Added line(s). * * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-push-back">org.opencv.core.Mat.push_back</a> */ public void push_back(Mat m) { n_push_back(nativeObj, m.nativeObj); return; } // // C++: void Mat::release() // /** * <p>Decrements the reference counter and deallocates the matrix if needed.</p> * * <p>The method decrements the reference counter associated with the matrix data. * When the reference counter reaches 0, the matrix data is deallocated and the * data and the reference counter pointers are set to NULL's. If the matrix * header points to an external data set (see "Mat.Mat"), the reference counter * is NULL, and the method has no effect in this case.</p> * * <p>This method can be called manually to force the matrix data deallocation. But * since this method is automatically called in the destructor, or by any other * method that changes the data pointer, it is usually not needed. The reference * counter decrement and check for 0 is an atomic operation on the platforms * that support it. Thus, it is safe to operate on the same matrices * asynchronously in different threads.</p> * * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-release">org.opencv.core.Mat.release</a> */ public void release() { n_release(nativeObj); return; } // // C++: Mat Mat::reshape(int cn, int rows = 0) // /** * <p>Changes the shape and/or the number of channels of a 2D matrix without * copying the data.</p> * * <p>The method makes a new matrix header for <code>*this</code> elements. The new * matrix may have a different size and/or different number of channels. Any * combination is possible if:</p> * <ul> * <li> No extra elements are included into the new matrix and no elements are * excluded. Consequently, the product <code>rows*cols*channels()</code> must * stay the same after the transformation. * <li> No data is copied. That is, this is an O(1) operation. Consequently, * if you change the number of rows, or the operation changes the indices of * elements row in some other way, the matrix must be continuous. See * "Mat.isContinuous". * </ul> * <p>For example, if there is a set of 3D points stored as an STL vector, and you * want to represent the points as a <code>3xN</code> matrix, do the following: * <code></p> * * <p>// C++ code:</p> * * <p>std.vector<Point3f> vec;...</p> * * <p>Mat pointMat = Mat(vec). // convert vector to Mat, O(1) operation</p> * * <p>reshape(1). // make Nx3 1-channel matrix out of Nx1 3-channel.</p> * * <p>// Also, an O(1) operation</p> * * <p>t(); // finally, transpose the Nx3 matrix.</p> * * <p>// This involves copying all the elements</p> * * @param cn New number of channels. If the parameter is 0, the number of * channels remains the same. * @param rows New number of rows. If the parameter is 0, the number of rows * remains the same. * * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-reshape">org.opencv.core.Mat.reshape</a> */ public Mat reshape(int cn, int rows) { Mat retVal = new Mat(n_reshape(nativeObj, cn, rows)); return retVal; } /** * <p>Changes the shape and/or the number of channels of a 2D matrix without * copying the data.</p> * * <p>The method makes a new matrix header for <code>*this</code> elements. The new * matrix may have a different size and/or different number of channels. Any * combination is possible if:</p> * <ul> * <li> No extra elements are included into the new matrix and no elements are * excluded. Consequently, the product <code>rows*cols*channels()</code> must * stay the same after the transformation. * <li> No data is copied. That is, this is an O(1) operation. Consequently, * if you change the number of rows, or the operation changes the indices of * elements row in some other way, the matrix must be continuous. See * "Mat.isContinuous". * </ul> * <p>For example, if there is a set of 3D points stored as an STL vector, and you * want to represent the points as a <code>3xN</code> matrix, do the following: * <code></p> * * <p>// C++ code:</p> * * <p>std.vector<Point3f> vec;...</p> * * <p>Mat pointMat = Mat(vec). // convert vector to Mat, O(1) operation</p> * * <p>reshape(1). // make Nx3 1-channel matrix out of Nx1 3-channel.</p> * * <p>// Also, an O(1) operation</p> * * <p>t(); // finally, transpose the Nx3 matrix.</p> * * <p>// This involves copying all the elements</p> * * @param cn New number of channels. If the parameter is 0, the number of * channels remains the same. * * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-reshape">org.opencv.core.Mat.reshape</a> */ public Mat reshape(int cn) { Mat retVal = new Mat(n_reshape(nativeObj, cn)); return retVal; } // // C++: Mat Mat::row(int y) // /** * <p>Creates a matrix header for the specified matrix row.</p> * * <p>The method makes a new header for the specified matrix row and returns it. * This is an O(1) operation, regardless of the matrix size. The underlying data * of the new matrix is shared with the original matrix. Here is the example of * one of the classical basic matrix processing operations, <code>axpy</code>, * used by LU and many other algorithms: <code></p> * * <p>// C++ code:</p> * * <p>inline void matrix_axpy(Mat& A, int i, int j, double alpha)</p> * * * <p>A.row(i) += A.row(j)*alpha;</p> * * * <p>Note: </code></p> * * <p>In the current implementation, the following code does not work as expected: * <code></p> * * <p>// C++ code:</p> * * <p>Mat A;...</p> * * <p>A.row(i) = A.row(j); // will not work</p> * * <p>This happens because <code>A.row(i)</code> forms a temporary header that is * further assigned to another header. Remember that each of these operations is * O(1), that is, no data is copied. Thus, the above assignment is not true if * you may have expected the j-th row to be copied to the i-th row. To achieve * that, you should either turn this simple assignment into an expression or use * the "Mat.copyTo" method:</p> * * <p>Mat A;...</p> * * <p>// works, but looks a bit obscure.</p> * * <p>A.row(i) = A.row(j) + 0;</p> * * <p>// this is a bit longer, but the recommended method.</p> * * <p>A.row(j).copyTo(A.row(i));</p> * * @param y A 0-based row index. * * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-row">org.opencv.core.Mat.row</a> */ public Mat row(int y) { Mat retVal = new Mat(n_row(nativeObj, y)); return retVal; } // // C++: Mat Mat::rowRange(int startrow, int endrow) // /** * <p>Creates a matrix header for the specified row span.</p> * * <p>The method makes a new header for the specified row span of the matrix. * Similarly to "Mat.row" and "Mat.col", this is an O(1) operation.</p> * * @param startrow An inclusive 0-based start index of the row span. * @param endrow An exclusive 0-based ending index of the row span. * * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-rowrange">org.opencv.core.Mat.rowRange</a> */ public Mat rowRange(int startrow, int endrow) { Mat retVal = new Mat(n_rowRange(nativeObj, startrow, endrow)); return retVal; } // // C++: Mat Mat::rowRange(Range r) // /** * <p>Creates a matrix header for the specified row span.</p> * * <p>The method makes a new header for the specified row span of the matrix. * Similarly to "Mat.row" and "Mat.col", this is an O(1) operation.</p> * * @param r "Range" structure containing both the start and the end indices. * * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-rowrange">org.opencv.core.Mat.rowRange</a> */ public Mat rowRange(Range r) { Mat retVal = new Mat(n_rowRange(nativeObj, r.start, r.end)); return retVal; } // // C++: int Mat::rows() // public int rows() { int retVal = n_rows(nativeObj); return retVal; } // // C++: Mat Mat::operator =(Scalar s) // public Mat setTo(Scalar s) { Mat retVal = new Mat(n_setTo(nativeObj, s.val[0], s.val[1], s.val[2], s.val[3])); return retVal; } // // C++: Mat Mat::setTo(Scalar value, Mat mask = Mat()) // /** * <p>Sets all or some of the array elements to the specified value.</p> * * @param value Assigned scalar converted to the actual array type. * @param mask Operation mask of the same size as <code>*this</code>. This is an * advanced variant of the <code>Mat.operator=(const Scalar& s)</code> * operator. * * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-setto">org.opencv.core.Mat.setTo</a> */ public Mat setTo(Scalar value, Mat mask) { Mat retVal = new Mat(n_setTo(nativeObj, value.val[0], value.val[1], value.val[2], value.val[3], mask.nativeObj)); return retVal; } // // C++: Mat Mat::setTo(Mat value, Mat mask = Mat()) // /** * <p>Sets all or some of the array elements to the specified value.</p> * * @param value Assigned scalar converted to the actual array type. * @param mask Operation mask of the same size as <code>*this</code>. This is an * advanced variant of the <code>Mat.operator=(const Scalar& s)</code> * operator. * * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-setto">org.opencv.core.Mat.setTo</a> */ public Mat setTo(Mat value, Mat mask) { Mat retVal = new Mat(n_setTo(nativeObj, value.nativeObj, mask.nativeObj)); return retVal; } /** * <p>Sets all or some of the array elements to the specified value.</p> * * @param value Assigned scalar converted to the actual array type. * * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-setto">org.opencv.core.Mat.setTo</a> */ public Mat setTo(Mat value) { Mat retVal = new Mat(n_setTo(nativeObj, value.nativeObj)); return retVal; } // // C++: Size Mat::size() // /** * <p>Returns a matrix size.</p> * * <p>The method returns a matrix size: <code>Size(cols, rows)</code>. When the * matrix is more than 2-dimensional, the returned size is (-1, -1).</p> * * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-size">org.opencv.core.Mat.size</a> */ public Size size() { Size retVal = new Size(n_size(nativeObj)); return retVal; } // // C++: size_t Mat::step1(int i = 0) // /** * <p>Returns a normalized step.</p> * * <p>The method returns a matrix step divided by "Mat.elemSize1()". It can be * useful to quickly access an arbitrary matrix element.</p> * * @param i a i * * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-step1">org.opencv.core.Mat.step1</a> */ public long step1(int i) { long retVal = n_step1(nativeObj, i); return retVal; } /** * <p>Returns a normalized step.</p> * * <p>The method returns a matrix step divided by "Mat.elemSize1()". It can be * useful to quickly access an arbitrary matrix element.</p> * * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-step1">org.opencv.core.Mat.step1</a> */ public long step1() { long retVal = n_step1(nativeObj); return retVal; } // // C++: Mat Mat::operator()(int rowStart, int rowEnd, int colStart, int // colEnd) // /** * <p>Extracts a rectangular submatrix.</p> * * <p>The operators make a new header for the specified sub-array of * <code>*this</code>. They are the most generalized forms of "Mat.row", * "Mat.col", "Mat.rowRange", and "Mat.colRange". For example, * <code>A(Range(0, 10), Range.all())</code> is equivalent to <code>A.rowRange(0, * 10)</code>. Similarly to all of the above, the operators are O(1) operations, * that is, no matrix data is copied.</p> * * @param rowStart a rowStart * @param rowEnd a rowEnd * @param colStart a colStart * @param colEnd a colEnd * * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-operator">org.opencv.core.Mat.operator()</a> */ public Mat submat(int rowStart, int rowEnd, int colStart, int colEnd) { Mat retVal = new Mat(n_submat_rr(nativeObj, rowStart, rowEnd, colStart, colEnd)); return retVal; } // // C++: Mat Mat::operator()(Range rowRange, Range colRange) // /** * <p>Extracts a rectangular submatrix.</p> * * <p>The operators make a new header for the specified sub-array of * <code>*this</code>. They are the most generalized forms of "Mat.row", * "Mat.col", "Mat.rowRange", and "Mat.colRange". For example, * <code>A(Range(0, 10), Range.all())</code> is equivalent to <code>A.rowRange(0, * 10)</code>. Similarly to all of the above, the operators are O(1) operations, * that is, no matrix data is copied.</p> * * @param rowRange Start and end row of the extracted submatrix. The upper * boundary is not included. To select all the rows, use <code>Range.all()</code>. * @param colRange Start and end column of the extracted submatrix. The upper * boundary is not included. To select all the columns, use <code>Range.all()</code>. * * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-operator">org.opencv.core.Mat.operator()</a> */ public Mat submat(Range rowRange, Range colRange) { Mat retVal = new Mat(n_submat_rr(nativeObj, rowRange.start, rowRange.end, colRange.start, colRange.end)); return retVal; } // // C++: Mat Mat::operator()(Rect roi) // /** * <p>Extracts a rectangular submatrix.</p> * * <p>The operators make a new header for the specified sub-array of * <code>*this</code>. They are the most generalized forms of "Mat.row", * "Mat.col", "Mat.rowRange", and "Mat.colRange". For example, * <code>A(Range(0, 10), Range.all())</code> is equivalent to <code>A.rowRange(0, * 10)</code>. Similarly to all of the above, the operators are O(1) operations, * that is, no matrix data is copied.</p> * * @param roi Extracted submatrix specified as a rectangle. * * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-operator">org.opencv.core.Mat.operator()</a> */ public Mat submat(Rect roi) { Mat retVal = new Mat(n_submat(nativeObj, roi.x, roi.y, roi.width, roi.height)); return retVal; } // // C++: Mat Mat::t() // /** * <p>Transposes a matrix.</p> * * <p>The method performs matrix transposition by means of matrix expressions. It * does not perform the actual transposition but returns a temporary matrix * transposition object that can be further used as a part of more complex * matrix expressions or can be assigned to a matrix: <code></p> * * <p>// C++ code:</p> * * <p>Mat A1 = A + Mat.eye(A.size(), A.type())*lambda;</p> * * <p>Mat C = A1.t()*A1; // compute (A + lambda*I)^t * (A + lamda*I)</p> * * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-t">org.opencv.core.Mat.t</a> */ public Mat t() { Mat retVal = new Mat(n_t(nativeObj)); return retVal; } // // C++: size_t Mat::total() // /** * <p>Returns the total number of array elements.</p> * * <p>The method returns the number of array elements (a number of pixels if the * array represents an image).</p> * * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-total">org.opencv.core.Mat.total</a> */ public long total() { long retVal = n_total(nativeObj); return retVal; } // // C++: int Mat::type() // /** * <p>Returns the type of a matrix element.</p> * * <p>The method returns a matrix element type. This is an identifier compatible * with the <code>CvMat</code> type system, like <code>CV_16SC3</code> or 16-bit * signed 3-channel array, and so on.</p> * * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-type">org.opencv.core.Mat.type</a> */ public int type() { int retVal = n_type(nativeObj); return retVal; } // // C++: static Mat Mat::zeros(int rows, int cols, int type) // /** * <p>Returns a zero array of the specified size and type.</p> * * <p>The method returns a Matlab-style zero array initializer. It can be used to * quickly form a constant array as a function parameter, part of a matrix * expression, or as a matrix initializer. * <code></p> * * <p>// C++ code:</p> * * <p>Mat A;</p> * * <p>A = Mat.zeros(3, 3, CV_32F);</p> * * <p>In the example above, a new matrix is allocated only if <code>A</code> is not * a 3x3 floating-point matrix. Otherwise, the existing matrix <code>A</code> is * filled with zeros. * </code></p> * * @param rows Number of rows. * @param cols Number of columns. * @param type Created matrix type. * * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-zeros">org.opencv.core.Mat.zeros</a> */ public static Mat zeros(int rows, int cols, int type) { Mat retVal = new Mat(n_zeros(rows, cols, type)); return retVal; } // // C++: static Mat Mat::zeros(Size size, int type) // /** * <p>Returns a zero array of the specified size and type.</p> * * <p>The method returns a Matlab-style zero array initializer. It can be used to * quickly form a constant array as a function parameter, part of a matrix * expression, or as a matrix initializer. * <code></p> * * <p>// C++ code:</p> * * <p>Mat A;</p> * * <p>A = Mat.zeros(3, 3, CV_32F);</p> * * <p>In the example above, a new matrix is allocated only if <code>A</code> is not * a 3x3 floating-point matrix. Otherwise, the existing matrix <code>A</code> is * filled with zeros. * </code></p> * * @param size Alternative to the matrix size specification <code>Size(cols, * rows)</code>. * @param type Created matrix type. * * @see <a href="http://docs.opencv.org/modules/core/doc/basic_structures.html#mat-zeros">org.opencv.core.Mat.zeros</a> */ public static Mat zeros(Size size, int type) { Mat retVal = new Mat(n_zeros(size.width, size.height, type)); return retVal; } @Override protected void finalize() throws Throwable { n_delete(nativeObj); super.finalize(); } @Override public String toString() { return "Mat [ " + rows() + "*" + cols() + "*" + CvType.typeToString(type()) + ", isCont=" + isContinuous() + ", isSubmat=" + isSubmatrix() + ", nativeObj=0x" + Long.toHexString(nativeObj) + ", dataAddr=0x" + Long.toHexString(dataAddr()) + " ]"; } public String dump() { return nDump(nativeObj); } public int put(int row, int col, double... data) { int t = type(); if (data == null || data.length % CvType.channels(t) != 0) throw new java.lang.UnsupportedOperationException( "Provided data element number (" + (data == null ? 0 : data.length) + ") should be multiple of the Mat channels count (" + CvType.channels(t) + ")"); return nPutD(nativeObj, row, col, data.length, data); } public int put(int row, int col, float[] data) { int t = type(); if (data == null || data.length % CvType.channels(t) != 0) throw new java.lang.UnsupportedOperationException( "Provided data element number (" + (data == null ? 0 : data.length) + ") should be multiple of the Mat channels count (" + CvType.channels(t) + ")"); if (CvType.depth(t) == CvType.CV_32F) { return nPutF(nativeObj, row, col, data.length, data); } throw new java.lang.UnsupportedOperationException("Mat data type is not compatible: " + t); } public int put(int row, int col, int[] data) { int t = type(); if (data == null || data.length % CvType.channels(t) != 0) throw new java.lang.UnsupportedOperationException( "Provided data element number (" + (data == null ? 0 : data.length) + ") should be multiple of the Mat channels count (" + CvType.channels(t) + ")"); if (CvType.depth(t) == CvType.CV_32S) { return nPutI(nativeObj, row, col, data.length, data); } throw new java.lang.UnsupportedOperationException("Mat data type is not compatible: " + t); } public int put(int row, int col, short[] data) { int t = type(); if (data == null || data.length % CvType.channels(t) != 0) throw new java.lang.UnsupportedOperationException( "Provided data element number (" + (data == null ? 0 : data.length) + ") should be multiple of the Mat channels count (" + CvType.channels(t) + ")"); if (CvType.depth(t) == CvType.CV_16U || CvType.depth(t) == CvType.CV_16S) { return nPutS(nativeObj, row, col, data.length, data); } throw new java.lang.UnsupportedOperationException("Mat data type is not compatible: " + t); } public int put(int row, int col, byte[] data) { int t = type(); if (data == null || data.length % CvType.channels(t) != 0) throw new java.lang.UnsupportedOperationException( "Provided data element number (" + (data == null ? 0 : data.length) + ") should be multiple of the Mat channels count (" + CvType.channels(t) + ")"); if (CvType.depth(t) == CvType.CV_8U || CvType.depth(t) == CvType.CV_8S) { return nPutB(nativeObj, row, col, data.length, data); } throw new java.lang.UnsupportedOperationException("Mat data type is not compatible: " + t); } public int get(int row, int col, byte[] data) { int t = type(); if (data == null || data.length % CvType.channels(t) != 0) throw new java.lang.UnsupportedOperationException( "Provided data element number (" + (data == null ? 0 : data.length) + ") should be multiple of the Mat channels count (" + CvType.channels(t) + ")"); if (CvType.depth(t) == CvType.CV_8U || CvType.depth(t) == CvType.CV_8S) { return nGetB(nativeObj, row, col, data.length, data); } throw new java.lang.UnsupportedOperationException("Mat data type is not compatible: " + t); } public int get(int row, int col, short[] data) { int t = type(); if (data == null || data.length % CvType.channels(t) != 0) throw new java.lang.UnsupportedOperationException( "Provided data element number (" + (data == null ? 0 : data.length) + ") should be multiple of the Mat channels count (" + CvType.channels(t) + ")"); if (CvType.depth(t) == CvType.CV_16U || CvType.depth(t) == CvType.CV_16S) { return nGetS(nativeObj, row, col, data.length, data); } throw new java.lang.UnsupportedOperationException("Mat data type is not compatible: " + t); } public int get(int row, int col, int[] data) { int t = type(); if (data == null || data.length % CvType.channels(t) != 0) throw new java.lang.UnsupportedOperationException( "Provided data element number (" + (data == null ? 0 : data.length) + ") should be multiple of the Mat channels count (" + CvType.channels(t) + ")"); if (CvType.depth(t) == CvType.CV_32S) { return nGetI(nativeObj, row, col, data.length, data); } throw new java.lang.UnsupportedOperationException("Mat data type is not compatible: " + t); } public int get(int row, int col, float[] data) { int t = type(); if (data == null || data.length % CvType.channels(t) != 0) throw new java.lang.UnsupportedOperationException( "Provided data element number (" + (data == null ? 0 : data.length) + ") should be multiple of the Mat channels count (" + CvType.channels(t) + ")"); if (CvType.depth(t) == CvType.CV_32F) { return nGetF(nativeObj, row, col, data.length, data); } throw new java.lang.UnsupportedOperationException("Mat data type is not compatible: " + t); } public int get(int row, int col, double[] data) { int t = type(); if (data == null || data.length % CvType.channels(t) != 0) throw new java.lang.UnsupportedOperationException( "Provided data element number (" + (data == null ? 0 : data.length) + ") should be multiple of the Mat channels count (" + CvType.channels(t) + ")"); if (CvType.depth(t) == CvType.CV_64F) { return nGetD(nativeObj, row, col, data.length, data); } throw new java.lang.UnsupportedOperationException("Mat data type is not compatible: " + t); } public double[] get(int row, int col) { return nGet(nativeObj, row, col); } public int height() { return rows(); } public int width() { return cols(); } public long getNativeObjAddr() { return nativeObj; } // C++: Mat::Mat() private static native long n_Mat(); // C++: Mat::Mat(int rows, int cols, int type) private static native long n_Mat(int rows, int cols, int type); // C++: Mat::Mat(Size size, int type) private static native long n_Mat(double size_width, double size_height, int type); // C++: Mat::Mat(int rows, int cols, int type, Scalar s) private static native long n_Mat(int rows, int cols, int type, double s_val0, double s_val1, double s_val2, double s_val3); // C++: Mat::Mat(Size size, int type, Scalar s) private static native long n_Mat(double size_width, double size_height, int type, double s_val0, double s_val1, double s_val2, double s_val3); // C++: Mat::Mat(Mat m, Range rowRange, Range colRange = Range::all()) private static native long n_Mat(long m_nativeObj, int rowRange_start, int rowRange_end, int colRange_start, int colRange_end); private static native long n_Mat(long m_nativeObj, int rowRange_start, int rowRange_end); // C++: Mat Mat::adjustROI(int dtop, int dbottom, int dleft, int dright) private static native long n_adjustROI(long nativeObj, int dtop, int dbottom, int dleft, int dright); // C++: void Mat::assignTo(Mat m, int type = -1) private static native void n_assignTo(long nativeObj, long m_nativeObj, int type); private static native void n_assignTo(long nativeObj, long m_nativeObj); // C++: int Mat::channels() private static native int n_channels(long nativeObj); // C++: int Mat::checkVector(int elemChannels, int depth = -1, bool // requireContinuous = true) private static native int n_checkVector(long nativeObj, int elemChannels, int depth, boolean requireContinuous); private static native int n_checkVector(long nativeObj, int elemChannels, int depth); private static native int n_checkVector(long nativeObj, int elemChannels); // C++: Mat Mat::clone() private static native long n_clone(long nativeObj); // C++: Mat Mat::col(int x) private static native long n_col(long nativeObj, int x); // C++: Mat Mat::colRange(int startcol, int endcol) private static native long n_colRange(long nativeObj, int startcol, int endcol); // C++: int Mat::dims() private static native int n_dims(long nativeObj); // C++: int Mat::cols() private static native int n_cols(long nativeObj); // C++: void Mat::convertTo(Mat& m, int rtype, double alpha = 1, double beta // = 0) private static native void n_convertTo(long nativeObj, long m_nativeObj, int rtype, double alpha, double beta); private static native void n_convertTo(long nativeObj, long m_nativeObj, int rtype, double alpha); private static native void n_convertTo(long nativeObj, long m_nativeObj, int rtype); // C++: void Mat::copyTo(Mat& m) private static native void n_copyTo(long nativeObj, long m_nativeObj); // C++: void Mat::copyTo(Mat& m, Mat mask) private static native void n_copyTo(long nativeObj, long m_nativeObj, long mask_nativeObj); // C++: void Mat::create(int rows, int cols, int type) private static native void n_create(long nativeObj, int rows, int cols, int type); // C++: void Mat::create(Size size, int type) private static native void n_create(long nativeObj, double size_width, double size_height, int type); // C++: Mat Mat::cross(Mat m) private static native long n_cross(long nativeObj, long m_nativeObj); // C++: long Mat::dataAddr() private static native long n_dataAddr(long nativeObj); // C++: int Mat::depth() private static native int n_depth(long nativeObj); // C++: Mat Mat::diag(int d = 0) private static native long n_diag(long nativeObj, int d); // C++: static Mat Mat::diag(Mat d) private static native long n_diag(long d_nativeObj); // C++: double Mat::dot(Mat m) private static native double n_dot(long nativeObj, long m_nativeObj); // C++: size_t Mat::elemSize() private static native long n_elemSize(long nativeObj); // C++: size_t Mat::elemSize1() private static native long n_elemSize1(long nativeObj); // C++: bool Mat::empty() private static native boolean n_empty(long nativeObj); // C++: static Mat Mat::eye(int rows, int cols, int type) private static native long n_eye(int rows, int cols, int type); // C++: static Mat Mat::eye(Size size, int type) private static native long n_eye(double size_width, double size_height, int type); // C++: Mat Mat::inv(int method = DECOMP_LU) private static native long n_inv(long nativeObj, int method); private static native long n_inv(long nativeObj); // C++: bool Mat::isContinuous() private static native boolean n_isContinuous(long nativeObj); // C++: bool Mat::isSubmatrix() private static native boolean n_isSubmatrix(long nativeObj); // C++: void Mat::locateROI(Size wholeSize, Point ofs) private static native void locateROI_0(long nativeObj, double[] wholeSize_out, double[] ofs_out); // C++: Mat Mat::mul(Mat m, double scale = 1) private static native long n_mul(long nativeObj, long m_nativeObj, double scale); private static native long n_mul(long nativeObj, long m_nativeObj); // C++: static Mat Mat::ones(int rows, int cols, int type) private static native long n_ones(int rows, int cols, int type); // C++: static Mat Mat::ones(Size size, int type) private static native long n_ones(double size_width, double size_height, int type); // C++: void Mat::push_back(Mat m) private static native void n_push_back(long nativeObj, long m_nativeObj); // C++: void Mat::release() private static native void n_release(long nativeObj); // C++: Mat Mat::reshape(int cn, int rows = 0) private static native long n_reshape(long nativeObj, int cn, int rows); private static native long n_reshape(long nativeObj, int cn); // C++: Mat Mat::row(int y) private static native long n_row(long nativeObj, int y); // C++: Mat Mat::rowRange(int startrow, int endrow) private static native long n_rowRange(long nativeObj, int startrow, int endrow); // C++: int Mat::rows() private static native int n_rows(long nativeObj); // C++: Mat Mat::operator =(Scalar s) private static native long n_setTo(long nativeObj, double s_val0, double s_val1, double s_val2, double s_val3); // C++: Mat Mat::setTo(Scalar value, Mat mask = Mat()) private static native long n_setTo(long nativeObj, double s_val0, double s_val1, double s_val2, double s_val3, long mask_nativeObj); // C++: Mat Mat::setTo(Mat value, Mat mask = Mat()) private static native long n_setTo(long nativeObj, long value_nativeObj, long mask_nativeObj); private static native long n_setTo(long nativeObj, long value_nativeObj); // C++: Size Mat::size() private static native double[] n_size(long nativeObj); // C++: size_t Mat::step1(int i = 0) private static native long n_step1(long nativeObj, int i); private static native long n_step1(long nativeObj); // C++: Mat Mat::operator()(Range rowRange, Range colRange) private static native long n_submat_rr(long nativeObj, int rowRange_start, int rowRange_end, int colRange_start, int colRange_end); // C++: Mat Mat::operator()(Rect roi) private static native long n_submat(long nativeObj, int roi_x, int roi_y, int roi_width, int roi_height); // C++: Mat Mat::t() private static native long n_t(long nativeObj); // C++: size_t Mat::total() private static native long n_total(long nativeObj); // C++: int Mat::type() private static native int n_type(long nativeObj); // C++: static Mat Mat::zeros(int rows, int cols, int type) private static native long n_zeros(int rows, int cols, int type); // C++: static Mat Mat::zeros(Size size, int type) private static native long n_zeros(double size_width, double size_height, int type); // native support for java finalize() private static native void n_delete(long nativeObj); private static native int nPutD(long self, int row, int col, int count, double[] data); private static native int nPutF(long self, int row, int col, int count, float[] data); private static native int nPutI(long self, int row, int col, int count, int[] data); private static native int nPutS(long self, int row, int col, int count, short[] data); private static native int nPutB(long self, int row, int col, int count, byte[] data); private static native int nGetB(long self, int row, int col, int count, byte[] vals); private static native int nGetS(long self, int row, int col, int count, short[] vals); private static native int nGetI(long self, int row, int col, int count, int[] vals); private static native int nGetF(long self, int row, int col, int count, float[] vals); private static native int nGetD(long self, int row, int col, int count, double[] vals); private static native double[] nGet(long self, int row, int col); private static native String nDump(long self); }