Back to project page android-opencv-template.
The source code is released under:
MIT License
If you think the Android project android-opencv-template listed in this page is inappropriate, such as containing malicious code/tools or violating the copyright, please email info at java2s dot com, thanks.
// // This file is auto-generated. Please don't modify it! ///*w ww. j av a 2s .c om*/ package org.opencv.ml; import org.opencv.core.Mat; import org.opencv.core.Range; // C++: class CvBoost /** * <p>Boosted tree classifier derived from "CvStatModel".</p> * * @see <a href="http://docs.opencv.org/modules/ml/doc/boosting.html#cvboost">org.opencv.ml.CvBoost : public CvStatModel</a> */ public class CvBoost extends CvStatModel { protected CvBoost(long addr) { super(addr); } public static final int DISCRETE = 0, REAL = 1, LOGIT = 2, GENTLE = 3, DEFAULT = 0, GINI = 1, MISCLASS = 3, SQERR = 4; // // C++: CvBoost::CvBoost() // /** * <p>Default and training constructors.</p> * * <p>The constructors follow conventions of "CvStatModel.CvStatModel". See * "CvStatModel.train" for parameters descriptions.</p> * * @see <a href="http://docs.opencv.org/modules/ml/doc/boosting.html#cvboost-cvboost">org.opencv.ml.CvBoost.CvBoost</a> */ public CvBoost() { super( CvBoost_0() ); return; } // // C++: CvBoost::CvBoost(Mat trainData, int tflag, Mat responses, Mat varIdx = cv::Mat(), Mat sampleIdx = cv::Mat(), Mat varType = cv::Mat(), Mat missingDataMask = cv::Mat(), CvBoostParams params = CvBoostParams()) // /** * <p>Default and training constructors.</p> * * <p>The constructors follow conventions of "CvStatModel.CvStatModel". See * "CvStatModel.train" for parameters descriptions.</p> * * @param trainData a trainData * @param tflag a tflag * @param responses a responses * @param varIdx a varIdx * @param sampleIdx a sampleIdx * @param varType a varType * @param missingDataMask a missingDataMask * @param params a params * * @see <a href="http://docs.opencv.org/modules/ml/doc/boosting.html#cvboost-cvboost">org.opencv.ml.CvBoost.CvBoost</a> */ public CvBoost(Mat trainData, int tflag, Mat responses, Mat varIdx, Mat sampleIdx, Mat varType, Mat missingDataMask, CvBoostParams params) { super( CvBoost_1(trainData.nativeObj, tflag, responses.nativeObj, varIdx.nativeObj, sampleIdx.nativeObj, varType.nativeObj, missingDataMask.nativeObj, params.nativeObj) ); return; } /** * <p>Default and training constructors.</p> * * <p>The constructors follow conventions of "CvStatModel.CvStatModel". See * "CvStatModel.train" for parameters descriptions.</p> * * @param trainData a trainData * @param tflag a tflag * @param responses a responses * * @see <a href="http://docs.opencv.org/modules/ml/doc/boosting.html#cvboost-cvboost">org.opencv.ml.CvBoost.CvBoost</a> */ public CvBoost(Mat trainData, int tflag, Mat responses) { super( CvBoost_2(trainData.nativeObj, tflag, responses.nativeObj) ); return; } // // C++: void CvBoost::clear() // public void clear() { clear_0(nativeObj); return; } // // C++: float CvBoost::predict(Mat sample, Mat missing = cv::Mat(), Range slice = cv::Range::all(), bool rawMode = false, bool returnSum = false) // /** * <p>Predicts a response for an input sample.</p> * * <p>The method runs the sample through the trees in the ensemble and returns the * output class label based on the weighted voting.</p> * * @param sample Input sample. * @param missing Optional mask of missing measurements. To handle missing * measurements, the weak classifiers must include surrogate splits (see * <code>CvDTreeParams.use_surrogates</code>). * @param slice Continuous subset of the sequence of weak classifiers to be used * for prediction. By default, all the weak classifiers are used. * @param rawMode Normally, it should be set to <code>false</code>. * @param returnSum If <code>true</code> then return sum of votes instead of the * class label. * * @see <a href="http://docs.opencv.org/modules/ml/doc/boosting.html#cvboost-predict">org.opencv.ml.CvBoost.predict</a> */ public float predict(Mat sample, Mat missing, Range slice, boolean rawMode, boolean returnSum) { float retVal = predict_0(nativeObj, sample.nativeObj, missing.nativeObj, slice.start, slice.end, rawMode, returnSum); return retVal; } /** * <p>Predicts a response for an input sample.</p> * * <p>The method runs the sample through the trees in the ensemble and returns the * output class label based on the weighted voting.</p> * * @param sample Input sample. * * @see <a href="http://docs.opencv.org/modules/ml/doc/boosting.html#cvboost-predict">org.opencv.ml.CvBoost.predict</a> */ public float predict(Mat sample) { float retVal = predict_1(nativeObj, sample.nativeObj); return retVal; } // // C++: void CvBoost::prune(CvSlice slice) // /** * <p>Removes the specified weak classifiers.</p> * * <p>The method removes the specified weak classifiers from the sequence.</p> * * <p>Note: Do not confuse this method with the pruning of individual decision * trees, which is currently not supported.</p> * * @param slice Continuous subset of the sequence of weak classifiers to be * removed. * * @see <a href="http://docs.opencv.org/modules/ml/doc/boosting.html#cvboost-prune">org.opencv.ml.CvBoost.prune</a> */ public void prune(Range slice) { prune_0(nativeObj, slice.start, slice.end); return; } // // C++: bool CvBoost::train(Mat trainData, int tflag, Mat responses, Mat varIdx = cv::Mat(), Mat sampleIdx = cv::Mat(), Mat varType = cv::Mat(), Mat missingDataMask = cv::Mat(), CvBoostParams params = CvBoostParams(), bool update = false) // /** * <p>Trains a boosted tree classifier.</p> * * <p>The train method follows the common template of "CvStatModel.train". The * responses must be categorical, which means that boosted trees cannot be built * for regression, and there should be two classes.</p> * * @param trainData a trainData * @param tflag a tflag * @param responses a responses * @param varIdx a varIdx * @param sampleIdx a sampleIdx * @param varType a varType * @param missingDataMask a missingDataMask * @param params a params * @param update Specifies whether the classifier needs to be updated * (<code>true</code>, the new weak tree classifiers added to the existing * ensemble) or the classifier needs to be rebuilt from scratch * (<code>false</code>). * * @see <a href="http://docs.opencv.org/modules/ml/doc/boosting.html#cvboost-train">org.opencv.ml.CvBoost.train</a> */ public boolean train(Mat trainData, int tflag, Mat responses, Mat varIdx, Mat sampleIdx, Mat varType, Mat missingDataMask, CvBoostParams params, boolean update) { boolean retVal = train_0(nativeObj, trainData.nativeObj, tflag, responses.nativeObj, varIdx.nativeObj, sampleIdx.nativeObj, varType.nativeObj, missingDataMask.nativeObj, params.nativeObj, update); return retVal; } /** * <p>Trains a boosted tree classifier.</p> * * <p>The train method follows the common template of "CvStatModel.train". The * responses must be categorical, which means that boosted trees cannot be built * for regression, and there should be two classes.</p> * * @param trainData a trainData * @param tflag a tflag * @param responses a responses * * @see <a href="http://docs.opencv.org/modules/ml/doc/boosting.html#cvboost-train">org.opencv.ml.CvBoost.train</a> */ public boolean train(Mat trainData, int tflag, Mat responses) { boolean retVal = train_1(nativeObj, trainData.nativeObj, tflag, responses.nativeObj); return retVal; } @Override protected void finalize() throws Throwable { delete(nativeObj); } // C++: CvBoost::CvBoost() private static native long CvBoost_0(); // C++: CvBoost::CvBoost(Mat trainData, int tflag, Mat responses, Mat varIdx = cv::Mat(), Mat sampleIdx = cv::Mat(), Mat varType = cv::Mat(), Mat missingDataMask = cv::Mat(), CvBoostParams params = CvBoostParams()) private static native long CvBoost_1(long trainData_nativeObj, int tflag, long responses_nativeObj, long varIdx_nativeObj, long sampleIdx_nativeObj, long varType_nativeObj, long missingDataMask_nativeObj, long params_nativeObj); private static native long CvBoost_2(long trainData_nativeObj, int tflag, long responses_nativeObj); // C++: void CvBoost::clear() private static native void clear_0(long nativeObj); // C++: float CvBoost::predict(Mat sample, Mat missing = cv::Mat(), Range slice = cv::Range::all(), bool rawMode = false, bool returnSum = false) private static native float predict_0(long nativeObj, long sample_nativeObj, long missing_nativeObj, int slice_start, int slice_end, boolean rawMode, boolean returnSum); private static native float predict_1(long nativeObj, long sample_nativeObj); // C++: void CvBoost::prune(CvSlice slice) private static native void prune_0(long nativeObj, int slice_start, int slice_end); // C++: bool CvBoost::train(Mat trainData, int tflag, Mat responses, Mat varIdx = cv::Mat(), Mat sampleIdx = cv::Mat(), Mat varType = cv::Mat(), Mat missingDataMask = cv::Mat(), CvBoostParams params = CvBoostParams(), bool update = false) private static native boolean train_0(long nativeObj, long trainData_nativeObj, int tflag, long responses_nativeObj, long varIdx_nativeObj, long sampleIdx_nativeObj, long varType_nativeObj, long missingDataMask_nativeObj, long params_nativeObj, boolean update); private static native boolean train_1(long nativeObj, long trainData_nativeObj, int tflag, long responses_nativeObj); // native support for java finalize() private static native void delete(long nativeObj); }