Back to project page android-opencv-template.
The source code is released under:
MIT License
If you think the Android project android-opencv-template listed in this page is inappropriate, such as containing malicious code/tools or violating the copyright, please email info at java2s dot com, thanks.
// // This file is auto-generated. Please don't modify it! ////from w ww . ja v a2 s .c o m package org.opencv.ml; import org.opencv.core.Mat; // C++: class CvNormalBayesClassifier /** * <p>Bayes classifier for normally distributed data.</p> * * @see <a href="http://docs.opencv.org/modules/ml/doc/normal_bayes_classifier.html#cvnormalbayesclassifier">org.opencv.ml.CvNormalBayesClassifier : public CvStatModel</a> */ public class CvNormalBayesClassifier extends CvStatModel { protected CvNormalBayesClassifier(long addr) { super(addr); } // // C++: CvNormalBayesClassifier::CvNormalBayesClassifier() // /** * <p>Default and training constructors.</p> * * <p>The constructors follow conventions of "CvStatModel.CvStatModel". See * "CvStatModel.train" for parameters descriptions.</p> * * @see <a href="http://docs.opencv.org/modules/ml/doc/normal_bayes_classifier.html#cvnormalbayesclassifier-cvnormalbayesclassifier">org.opencv.ml.CvNormalBayesClassifier.CvNormalBayesClassifier</a> */ public CvNormalBayesClassifier() { super( CvNormalBayesClassifier_0() ); return; } // // C++: CvNormalBayesClassifier::CvNormalBayesClassifier(Mat trainData, Mat responses, Mat varIdx = cv::Mat(), Mat sampleIdx = cv::Mat()) // /** * <p>Default and training constructors.</p> * * <p>The constructors follow conventions of "CvStatModel.CvStatModel". See * "CvStatModel.train" for parameters descriptions.</p> * * @param trainData a trainData * @param responses a responses * @param varIdx a varIdx * @param sampleIdx a sampleIdx * * @see <a href="http://docs.opencv.org/modules/ml/doc/normal_bayes_classifier.html#cvnormalbayesclassifier-cvnormalbayesclassifier">org.opencv.ml.CvNormalBayesClassifier.CvNormalBayesClassifier</a> */ public CvNormalBayesClassifier(Mat trainData, Mat responses, Mat varIdx, Mat sampleIdx) { super( CvNormalBayesClassifier_1(trainData.nativeObj, responses.nativeObj, varIdx.nativeObj, sampleIdx.nativeObj) ); return; } /** * <p>Default and training constructors.</p> * * <p>The constructors follow conventions of "CvStatModel.CvStatModel". See * "CvStatModel.train" for parameters descriptions.</p> * * @param trainData a trainData * @param responses a responses * * @see <a href="http://docs.opencv.org/modules/ml/doc/normal_bayes_classifier.html#cvnormalbayesclassifier-cvnormalbayesclassifier">org.opencv.ml.CvNormalBayesClassifier.CvNormalBayesClassifier</a> */ public CvNormalBayesClassifier(Mat trainData, Mat responses) { super( CvNormalBayesClassifier_2(trainData.nativeObj, responses.nativeObj) ); return; } // // C++: void CvNormalBayesClassifier::clear() // public void clear() { clear_0(nativeObj); return; } // // C++: float CvNormalBayesClassifier::predict(Mat samples, Mat* results = 0) // /** * <p>Predicts the response for sample(s).</p> * * <p>The method estimates the most probable classes for input vectors. Input * vectors (one or more) are stored as rows of the matrix <code>samples</code>. * In case of multiple input vectors, there should be one output vector * <code>results</code>. The predicted class for a single input vector is * returned by the method.</p> * * <p>The function is parallelized with the TBB library.</p> * * @param samples a samples * @param results a results * * @see <a href="http://docs.opencv.org/modules/ml/doc/normal_bayes_classifier.html#cvnormalbayesclassifier-predict">org.opencv.ml.CvNormalBayesClassifier.predict</a> */ public float predict(Mat samples, Mat results) { float retVal = predict_0(nativeObj, samples.nativeObj, results.nativeObj); return retVal; } /** * <p>Predicts the response for sample(s).</p> * * <p>The method estimates the most probable classes for input vectors. Input * vectors (one or more) are stored as rows of the matrix <code>samples</code>. * In case of multiple input vectors, there should be one output vector * <code>results</code>. The predicted class for a single input vector is * returned by the method.</p> * * <p>The function is parallelized with the TBB library.</p> * * @param samples a samples * * @see <a href="http://docs.opencv.org/modules/ml/doc/normal_bayes_classifier.html#cvnormalbayesclassifier-predict">org.opencv.ml.CvNormalBayesClassifier.predict</a> */ public float predict(Mat samples) { float retVal = predict_1(nativeObj, samples.nativeObj); return retVal; } // // C++: bool CvNormalBayesClassifier::train(Mat trainData, Mat responses, Mat varIdx = cv::Mat(), Mat sampleIdx = cv::Mat(), bool update = false) // /** * <p>Trains the model.</p> * * <p>The method trains the Normal Bayes classifier. It follows the conventions of * the generic "CvStatModel.train" approach with the following limitations:</p> * <ul> * <li> Only <code>CV_ROW_SAMPLE</code> data layout is supported. * <li> Input variables are all ordered. * <li> Output variable is categorical, which means that elements of * <code>responses</code> must be integer numbers, though the vector may have * the <code>CV_32FC1</code> type. * <li> Missing measurements are not supported. * </ul> * * @param trainData a trainData * @param responses a responses * @param varIdx a varIdx * @param sampleIdx a sampleIdx * @param update Identifies whether the model should be trained from scratch * (<code>update=false</code>) or should be updated using the new training data * (<code>update=true</code>). * * @see <a href="http://docs.opencv.org/modules/ml/doc/normal_bayes_classifier.html#cvnormalbayesclassifier-train">org.opencv.ml.CvNormalBayesClassifier.train</a> */ public boolean train(Mat trainData, Mat responses, Mat varIdx, Mat sampleIdx, boolean update) { boolean retVal = train_0(nativeObj, trainData.nativeObj, responses.nativeObj, varIdx.nativeObj, sampleIdx.nativeObj, update); return retVal; } /** * <p>Trains the model.</p> * * <p>The method trains the Normal Bayes classifier. It follows the conventions of * the generic "CvStatModel.train" approach with the following limitations:</p> * <ul> * <li> Only <code>CV_ROW_SAMPLE</code> data layout is supported. * <li> Input variables are all ordered. * <li> Output variable is categorical, which means that elements of * <code>responses</code> must be integer numbers, though the vector may have * the <code>CV_32FC1</code> type. * <li> Missing measurements are not supported. * </ul> * * @param trainData a trainData * @param responses a responses * * @see <a href="http://docs.opencv.org/modules/ml/doc/normal_bayes_classifier.html#cvnormalbayesclassifier-train">org.opencv.ml.CvNormalBayesClassifier.train</a> */ public boolean train(Mat trainData, Mat responses) { boolean retVal = train_1(nativeObj, trainData.nativeObj, responses.nativeObj); return retVal; } @Override protected void finalize() throws Throwable { delete(nativeObj); } // C++: CvNormalBayesClassifier::CvNormalBayesClassifier() private static native long CvNormalBayesClassifier_0(); // C++: CvNormalBayesClassifier::CvNormalBayesClassifier(Mat trainData, Mat responses, Mat varIdx = cv::Mat(), Mat sampleIdx = cv::Mat()) private static native long CvNormalBayesClassifier_1(long trainData_nativeObj, long responses_nativeObj, long varIdx_nativeObj, long sampleIdx_nativeObj); private static native long CvNormalBayesClassifier_2(long trainData_nativeObj, long responses_nativeObj); // C++: void CvNormalBayesClassifier::clear() private static native void clear_0(long nativeObj); // C++: float CvNormalBayesClassifier::predict(Mat samples, Mat* results = 0) private static native float predict_0(long nativeObj, long samples_nativeObj, long results_nativeObj); private static native float predict_1(long nativeObj, long samples_nativeObj); // C++: bool CvNormalBayesClassifier::train(Mat trainData, Mat responses, Mat varIdx = cv::Mat(), Mat sampleIdx = cv::Mat(), bool update = false) private static native boolean train_0(long nativeObj, long trainData_nativeObj, long responses_nativeObj, long varIdx_nativeObj, long sampleIdx_nativeObj, boolean update); private static native boolean train_1(long nativeObj, long trainData_nativeObj, long responses_nativeObj); // native support for java finalize() private static native void delete(long nativeObj); }