Java examples for Machine Learning AI:weka
use weka classifiers JRip
import weka.classifiers.Classifier; import weka.classifiers.Evaluation; import weka.classifiers.bayes.NaiveBayes; import weka.classifiers.functions.SMO; import weka.classifiers.functions.supportVector.PolyKernel; import weka.classifiers.meta.CVParameterSelection; import weka.classifiers.meta.Dagging; import weka.classifiers.meta.GridSearch; import weka.classifiers.misc.SerializedClassifier; import weka.classifiers.rules.JRip; import weka.classifiers.trees.J48; import weka.core.Instances; import weka.core.Utils; import java.io.BufferedReader; import java.io.FileReader; public class TuningJRip { public static void main(String[] args) throws Exception { Instances train = new Instances(new BufferedReader(new FileReader( "hypothyroid_train.arff"))); Instances test = new Instances(new BufferedReader(new FileReader( "hypothyroid_test.arff"))); train.setClassIndex(train.numAttributes() - 1); test.setClassIndex(test.numAttributes() - 1); CVParameterSelection ps = new CVParameterSelection(); ps.setClassifier(new J48()); ps.addCVParameter("F 1 5 5"); ps.addCVParameter("N 1 5 5"); ps.addCVParameter("O 1 5 5"); ps.addCVParameter("S 1 5 5"); JRip cls = new JRip(); cls.setFolds(5);/*from w ww . j av a 2 s. com*/ cls.setMinNo(1); cls.setOptimizations(5); cls.setSeed(1); cls.buildClassifier(train); ps.buildClassifier(train); System.out.println(Utils.joinOptions(ps.getBestClassifierOptions())); weka.core.SerializationHelper.write( "hypothyroid.model", cls); Evaluation eval = new Evaluation(train); eval.evaluateModel(cls, test); Double error_c = eval.errorRate(); System.out.println(error_c); } }