Java examples for Machine Learning AI:weka
Tuning weka classifiers trees J48
import weka.classifiers.Classifier; import weka.classifiers.Evaluation; import weka.classifiers.bayes.NaiveBayes; import weka.classifiers.functions.SMO; import weka.classifiers.functions.supportVector.PolyKernel; import weka.classifiers.meta.CVParameterSelection; import weka.classifiers.meta.Dagging; import weka.classifiers.meta.GridSearch; import weka.classifiers.misc.SerializedClassifier; import weka.classifiers.rules.JRip; import weka.classifiers.trees.J48; import weka.core.Instances; import weka.core.Utils; import java.io.BufferedReader; import java.io.FileReader; public class TuningJ48 { public static void main(String[] args) throws Exception { // load data sets Instances train = new Instances(new BufferedReader(new FileReader( "hypothyroid_train.arff"))); Instances test = new Instances(new BufferedReader(new FileReader( "hypothyroid_test.arff"))); train.setClassIndex(train.numAttributes() - 1); test.setClassIndex(test.numAttributes() - 1); CVParameterSelection ps = new CVParameterSelection(); ps.setClassifier(new J48()); ps.addCVParameter("C 0.01 0.5 50"); ps.addCVParameter("M 1 10 10"); J48 cls = new J48(); cls.buildClassifier(train);//from w ww .j a v a 2 s. c o m ps.buildClassifier(train); System.out .println(Utils.joinOptions(ps.getBestClassifierOptions())); weka.core.SerializationHelper.write( "hypothyroid.model", cls); Evaluation eval = new Evaluation(train); eval.evaluateModel(cls, test); Double error_c = eval.errorRate(); System.out.println(error_c); } }