Java examples for Machine Learning AI:weka
use weka classifiers trees LMT
import weka.classifiers.Evaluation; import weka.classifiers.functions.SMO; import weka.classifiers.meta.Bagging; import weka.classifiers.meta.CVParameterSelection; import weka.classifiers.meta.Dagging; import weka.classifiers.trees.RandomForest; import weka.core.Instances; import java.io.BufferedReader; import java.io.FileReader; import java.io.FileWriter; import java.io.PrintWriter; public class UntunedRF { public static void main(String[] args) throws Exception { Instances train = new Instances(new BufferedReader(new FileReader( "sonar_train.arff"))); Instances test = new Instances(new BufferedReader(new FileReader( "sonar_test.arff"))); train.setClassIndex(train.numAttributes() - 1); test.setClassIndex(test.numAttributes() - 1); Bagging vs = new Bagging(); vs.setOptions(weka.core.Utils/* ww w. j a v a 2s . com*/ .splitOptions("-P 100 -S 1 -I 10 -W \"weka.classifiers.trees.LMT\"")); vs.buildClassifier(train); PrintWriter pw = new PrintWriter(new FileWriter( "sonar-L5.txt")); for (int i = 0; i < test.numInstances(); i++) { double pred = vs.classifyInstance(test.instance(i)); pw.println(pred); } pw.close(); Evaluation eval = new Evaluation(train); eval.evaluateModel(vs, test); Double error_c = eval.errorRate(); System.out.println(error_c); } }