Here you can find the source of binomialCoefficientLog(final int n, final int k)
Returns the natural <code>log</code> of the <a href="http://mathworld.wolfram.com/BinomialCoefficient.html"> Binomial Coefficient</a>, "<code>n choose k</code>", the number of <code>k</code>-element subsets that can be selected from an <code>n</code>-element set.
Parameter | Description |
---|---|
n | the size of the set |
k | the size of the subsets to be counted |
Parameter | Description |
---|---|
IllegalArgumentException | if preconditions are not met. |
n choose k
public static double binomialCoefficientLog(final int n, final int k)
//package com.java2s; /*//from w w w . j av a2 s .c o m * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ public class Main { /** * Returns the natural <code>log</code> of the <a * href="http://mathworld.wolfram.com/BinomialCoefficient.html"> Binomial * Coefficient</a>, "<code>n choose k</code>", the number of * <code>k</code>-element subsets that can be selected from an * <code>n</code>-element set. * <p> * <Strong>Preconditions</strong>: * <ul> * <li> <code>0 <= k <= n </code> (otherwise * <code>IllegalArgumentException</code> is thrown)</li> * </ul></p> * * @param n the size of the set * @param k the size of the subsets to be counted * @return <code>n choose k</code> * @throws IllegalArgumentException if preconditions are not met. */ public static double binomialCoefficientLog(final int n, final int k) { if (n < k) { throw new IllegalArgumentException("must have n >= k for binomial coefficient (n,k)"); } if (n < 0) { throw new IllegalArgumentException("must have n >= 0 for binomial coefficient (n,k)"); } if ((n == k) || (k == 0)) { return 0; } if ((k == 1) || (k == n - 1)) { return Math.log((double) n); } double logSum = 0; // n!/k! for (int i = k + 1; i <= n; i++) { logSum += Math.log((double) i); } // divide by (n-k)! for (int i = 2; i <= n - k; i++) { logSum -= Math.log((double) i); } return logSum; } /** * <p>Returns the * <a href="http://mathworld.wolfram.com/Logarithm.html">logarithm</a> * for base <code>b</code> of <code>x</code>. * </p> * <p>Returns <code>NaN<code> if either argument is negative. If * <code>base</code> is 0 and <code>x</code> is positive, 0 is returned. * If <code>base</code> is positive and <code>x</code> is 0, * <code>Double.NEGATIVE_INFINITY</code> is returned. If both arguments * are 0, the result is <code>NaN</code>.</p> * * @param base the base of the logarithm, must be greater than 0 * @param x argument, must be greater than 0 * @return the value of the logarithm - the number y such that base^y = x. * @since 1.2 */ public static double log(double base, double x) { return Math.log(x) / Math.log(base); } }