Java Binomial Coefficients binomialCoefficientDouble(final int n, final int k)

Here you can find the source of binomialCoefficientDouble(final int n, final int k)

Description

Returns a <code>double</code> representation of the <a href="http://mathworld.wolfram.com/BinomialCoefficient.html"> Binomial Coefficient</a>, "<code>n choose k</code>", the number of <code>k</code>-element subsets that can be selected from an <code>n</code>-element set.

License

Apache License

Parameter

Parameter Description
n the size of the set
k the size of the subsets to be counted

Exception

Parameter Description
IllegalArgumentException if preconditions are not met.

Return

n choose k

Declaration

public static double binomialCoefficientDouble(final int n, final int k) 

Method Source Code

//package com.java2s;
/*//from  w w  w .j a  v  a 2  s .  c om
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

public class Main {
    /**
     * Returns a <code>double</code> representation of the <a
     * href="http://mathworld.wolfram.com/BinomialCoefficient.html"> Binomial
     * Coefficient</a>, "<code>n choose k</code>", the number of
     * <code>k</code>-element subsets that can be selected from an
     * <code>n</code>-element set.
     * <p>
     * <Strong>Preconditions</strong>:
     * <ul>
     * <li> <code>0 <= k <= n </code> (otherwise
     * <code>IllegalArgumentException</code> is thrown)</li>
     * <li> The result is small enough to fit into a <code>double</code>. The
     * largest value of <code>n</code> for which all coefficients are <
     * Double.MAX_VALUE is 1029. If the computed value exceeds Double.MAX_VALUE,
     * Double.POSITIVE_INFINITY is returned</li>
     * </ul></p>
     * 
     * @param n the size of the set
     * @param k the size of the subsets to be counted
     * @return <code>n choose k</code>
     * @throws IllegalArgumentException if preconditions are not met.
     */
    public static double binomialCoefficientDouble(final int n, final int k) {
        return Math.floor(Math.exp(binomialCoefficientLog(n, k)) + 0.5);
    }

    /**
     * Returns the natural <code>log</code> of the <a
     * href="http://mathworld.wolfram.com/BinomialCoefficient.html"> Binomial
     * Coefficient</a>, "<code>n choose k</code>", the number of
     * <code>k</code>-element subsets that can be selected from an
     * <code>n</code>-element set.
     * <p>
     * <Strong>Preconditions</strong>:
     * <ul>
     * <li> <code>0 <= k <= n </code> (otherwise
     * <code>IllegalArgumentException</code> is thrown)</li>
     * </ul></p>
     * 
     * @param n the size of the set
     * @param k the size of the subsets to be counted
     * @return <code>n choose k</code>
     * @throws IllegalArgumentException if preconditions are not met.
     */
    public static double binomialCoefficientLog(final int n, final int k) {
        if (n < k) {
            throw new IllegalArgumentException("must have n >= k for binomial coefficient (n,k)");
        }
        if (n < 0) {
            throw new IllegalArgumentException("must have n >= 0 for binomial coefficient (n,k)");
        }
        if ((n == k) || (k == 0)) {
            return 0;
        }
        if ((k == 1) || (k == n - 1)) {
            return Math.log((double) n);
        }
        double logSum = 0;

        // n!/k!
        for (int i = k + 1; i <= n; i++) {
            logSum += Math.log((double) i);
        }

        // divide by (n-k)!
        for (int i = 2; i <= n - k; i++) {
            logSum -= Math.log((double) i);
        }

        return logSum;
    }

    /** 
     * <p>Returns the 
     * <a href="http://mathworld.wolfram.com/Logarithm.html">logarithm</a>
     * for base <code>b</code> of <code>x</code>.
     * </p>
     * <p>Returns <code>NaN<code> if either argument is negative.  If 
     * <code>base</code> is 0 and <code>x</code> is positive, 0 is returned.
     * If <code>base</code> is positive and <code>x</code> is 0, 
     * <code>Double.NEGATIVE_INFINITY</code> is returned.  If both arguments
     * are 0, the result is <code>NaN</code>.</p>
     * 
     * @param base the base of the logarithm, must be greater than 0
     * @param x argument, must be greater than 0
     * @return the value of the logarithm - the number y such that base^y = x.
     * @since 1.2
     */
    public static double log(double base, double x) {
        return Math.log(x) / Math.log(base);
    }
}

Related

  1. binomialCoefficient(double n, double k)
  2. binomialCoefficient(int n, int k)
  3. binomialCoefficient(int n, int k)
  4. binomialCoefficient(int n, int k)
  5. binomialCoefficient(long n, long k)
  6. binomialCoefficientLog(final int n, final int k)
  7. binomialCoefficients(int n, int k)
  8. binomialPmf(int k, int n, double p)
  9. binomialRand(int n, double pp)