List of utility methods to do Binomial Coefficients
long | binomial(final int n, final int k) Compute binomial coefficient for k out of n. if (k > n || k < 0) { return 0; if (k == 0) { return 1; return BINOMIAL[n][k - 1]; |
int | binomial(int n, double p) binomial assert 0.0 <= p && p <= 1.0; int x = 0; for (int i = 0; i < n; i++) { x += bernouli(p); return x; |
long | binomial(int n, final int k) binomial final int min = (k < n - k ? k : n - k); long bin = 1; for (int i = 1; i <= min; i++) { bin *= n; bin /= i; n--; return bin; ... |
long | binomial(int N, int K) Compute binomial (N) (K) assert N >= 0 : N; assert K >= 0 : K; long[][] binomial = new long[N + 1][K + 1]; for (int k = 1; k <= K; k++) { binomial[0][k] = 0; for (int n = 0; n <= N; n++) { binomial[n][0] = 1; ... |
int | binomial(int n, int k) Returns binomial coefficient if (n < 0 || k < 0 || k > n) return 0; int res = 1; for (int i = k + 1; i <= n; i++) res *= i; for (int i = 2; i <= n - k; i++) res /= i; return res; ... |
double | binomialCdf(int k, int n, double p) Binomial cumulative distribution function. double da, db, dp; if (k < 0) { dp = 0.0; } else if (k >= n) { dp = 1.0; } else if (p == 0.0) { dp = (k < 0) ? 0.0 : 1.0; } else if (p == 1.0) { ... |
long | binomialCoeff(int n, int k) Multiplicative form from Wikipedia if (n <= k) { return 1; int c; if (k > n - k) { k = n - k; c = 1; ... |
double | binomialCoefficient(double n, double k) binomial Coefficient return factorial(n) / (factorial(k) * factorial(n - k));
|
double | binomialCoefficient(int n, int k) binomial Coefficient double ret = 1; for (int i = n; i > k; i--) ret *= i; return ret; |
long | binomialCoefficient(int n, int k) binomial Coefficient if (k > n) return 0; long result = 1; for (int i = 1; i <= k; i++) result = result * (n - k + i) / i; return result; |