Here you can find the source of atan2(double y, double x)
Parameter | Description |
---|---|
y | the ordinate coordinate |
x | the abscissa coordinate |
public static double atan2(double y, double x)
//package com.java2s; /*// w w w. ja v a 2 s . co m * Copyright 2007-2008 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER * * This code is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 * only, as published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License version 2 for more details (a copy is * included in the LICENSE file that accompanied this code). * * You should have received a copy of the GNU General Public License * version 2 along with this work; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA * 02110-1301 USA * * Please contact Sun Microsystems, Inc., 16 Network Circle, Menlo * Park, CA 94025 or visit www.sun.com if you need additional * information or have any questions. */ public class Main { private static final long no_sign_mask = 0x7FFFFFFFFFFFFFFFL; private static final long exp_mask = 0x7FF0000000000000L; private static final long one = 0x3ff0000000000000L; private static final double atanhi[] = { 4.63647609000806093515e-01, /* atan(0.5)hi 0x3FDDAC67, 0x0561BB4F */ 7.85398163397448278999e-01, /* atan(1.0)hi 0x3FE921FB, 0x54442D18 */ 9.82793723247329054082e-01, /* atan(1.5)hi 0x3FEF730B, 0xD281F69B */ 1.57079632679489655800e+00 /* atan(inf)hi 0x3FF921FB, 0x54442D18 */ }; private static final double atanlo[] = { 2.26987774529616870924e-17, /* atan(0.5)lo 0x3C7A2B7F, 0x222F65E2 */ 3.06161699786838301793e-17, /* atan(1.0)lo 0x3C81A626, 0x33145C07 */ 1.39033110312309984516e-17, /* atan(1.5)lo 0x3C700788, 0x7AF0CBBD */ 6.12323399573676603587e-17 /* atan(inf)lo 0x3C91A626, 0x33145C07 */ }; private static final double aT[] = { 3.33333333333329318027e-01, /* 0x3FD55555, 0x5555550D */ -1.99999999998764832476e-01, /* 0xBFC99999, 0x9998EBC4 */ 1.42857142725034663711e-01, /* 0x3FC24924, 0x920083FF */ -1.11111104054623557880e-01, /* 0xBFBC71C6, 0xFE231671 */ 9.09088713343650656196e-02, /* 0x3FB745CD, 0xC54C206E */ -7.69187620504482999495e-02, /* 0xBFB3B0F2, 0xAF749A6D */ 6.66107313738753120669e-02, /* 0x3FB10D66, 0xA0D03D51 */ -5.83357013379057348645e-02, /* 0xBFADDE2D, 0x52DEFD9A */ 4.97687799461593236017e-02, /* 0x3FA97B4B, 0x24760DEB */ -3.65315727442169155270e-02, /* 0xBFA2B444, 0x2C6A6C2F */ 1.62858201153657823623e-02, /* 0x3F90AD3A, 0xE322DA11 */ }; /** * Converts rectangular coordinates (<i>x</i>, <i>y</i>) to polar (<i>r</i>, <i>theta</i>). * This method computes the phase <i>theta</i> by computing an arc tangent * of <i>y</i>/<i>x</i> in the range of -<i>pi</i> to <i>pi</i>. Special cases: * <ul> * <li>If either argument is NaN, then the result is NaN. * <li>If the first argument is positive zero and the second argument is positive, * or the first argument is positive and finite and the second argument is positive infinity, * then the result is positive zero. * <li>If the first argument is negative zero and the second argument is positive, * or the first argument is negative and finite and the second argument is positive infinity, * then the result is negative zero. * <li>If the first argument is positive zero and the second argument is negative, * or the first argument is positive and finite and the second argument is negative infinity, * then the result is the double value closest to <i>pi</i>. * <li>If the first argument is negative zero and the second argument is negative, * or the first argument is negative and finite and the second argument is negative infinity, * then the result is the double value closest to -<i>pi</i>. * <li>If the first argument is positive and the second argument is positive zero or negative zero, * or the first argument is positive infinity and the second argument is finite, * then the result is the double value closest to <i>pi</i>/2. * <li>If the first argument is negative and the second argument is positive zero or negative zero, * or the first argument is negative infinity and the second argument is finite, * then the result is the double value closest to -<i>pi</i>/2. * <li>If both arguments are positive infinity, then the result is the double value closest to <i>pi</i>/4. * <li>If the first argument is positive infinity and the second argument is negative infinity, * then the result is the double value closest to 3*<i>pi</i>/4. * <li>If the first argument is negative infinity and the second argument is positive infinity, * then the result is the double value closest to -<i>pi</i>/4. * <li>If both arguments are negative infinity, then the result is the double value closest to -3*<i>pi</i>/4. * </ul> * * @param y the ordinate coordinate * @param x the abscissa coordinate * * @return the <i>theta</i> component of the point (<i>r</i>, <i>theta</i>) in polar coordinates * that corresponds to the point (<i>x</i>, <i>y</i>) in Cartesian coordinates. */ public static double atan2(double y, double x) { double pi_o_4 = 7.8539816339744827900E-01; /* 0x3FE921FB, 0x54442D18 */ double pi_o_2 = 1.5707963267948965580E+00; /* 0x3FF921FB, 0x54442D18 */ double pi = 3.1415926535897931160E+00; /* 0x400921FB, 0x54442D18 */ double pi_lo = 1.2246467991473531772E-16; /* 0x3CA1A626, 0x33145C07 */ double z; int k, m; long hx = Double.doubleToLongBits(x); long hy = Double.doubleToLongBits(y); long ix = (hx & no_sign_mask); long iy = (hy & no_sign_mask); /* x or y is NaN */ if ((Double.isNaN(x)) || (Double.isNaN(y))) { return (x + y); } /* x = 1.0 */ if (hx == one) return (atan(y)); /* 2 * sign(x) + sign(y) */ m = (int) (((hy >> 63) & 1) | ((hx >> 62) & 2)); /* when y = 0 */ if (iy == 0) { switch (m) { case 0: case 1: return (y); /* atan(+-0, +anything) = +- 0 */ case 2: return (pi); /* atan( +0, -anything) = pi */ case 3: return (-pi); /* atan( -0, -anything) = -pi */ } } /* when x = 0 */ if (ix == 0) { if (hy < 0) return (-pi_o_2); else return (pi_o_2); } /* when x is INF */ if (Double.isInfinite(x)) { if (Double.isInfinite(y)) { switch (m) { case 0: return (pi_o_4); /* atan(+inf, +inf) */ case 1: return (-pi_o_4); /* atan(-inf, +inf) */ case 2: return (3.0 * pi_o_4); /* atan(+inf, -inf) */ case 3: return (-3.0 * pi_o_4); /* atan(-inf, -inf) */ } } else { switch (m) { case 0: return (0.0); case 1: return (-0.0); case 2: return (pi); case 3: return (-pi); } } } /* when y is inf */ if (Double.isInfinite(y)) { if (hy < 0) return (-pi_o_2); else return (pi_o_2); } /* compute y / x */ k = (int) ((iy - ix) >> 52); if (k > 60) z = pi_o_2 + 0.5 * pi_lo; /* |y/x| > 2^60 */ else if ((hx < 0) && (k < -60)) z = 0.0; /* |y/x| < -2^60 */ else z = atan(Math.abs(y / x)); /* safe to do y/x */ switch (m) { case 0: return (z); /* atan(+,+) */ case 1: return (-z); /* atan(-,+) */ case 2: return (pi - (z - pi_lo)); /* atan(+,-) */ default: /*case 3*/ return ((z - pi_lo) - pi); /* atan(-,-) */ } } /** * Returns the arc tangent of an angle, in the range of -<i>pi</i>/2 through <i>pi</i>/2. * Special cases: * <ul> * <li>If the argument is NaN, then the result is NaN. * <li>If the argument is zero, then the result is a zero with the same sign as the argument. * </ul> * * @param a the value whose arc tangent is to be returned. * @return the arc tangent of the argument. */ public static double atan(double a) { double w, s1, s2, z; int id; long hx = Double.doubleToLongBits(a); long ix = hx & no_sign_mask; /* |a| >= 2^66 */ if (ix >= 0x4410000000000000L) { /* NaN */ if (ix > exp_mask) { return (a + a); } if (hx > 0) return (atanhi[3] + atanlo[3]); else return (-atanhi[3] - atanlo[3]); } /* |a| < 0.4375 */ if (ix < 0x3fdc000000000000L) { /* |a| < 2^-29 */ if (ix < 0x3e20000000000000L) { return (a); } id = -1; } else { a = Math.abs(a); /* |a| < 1.1875 */ if (ix < 0x3ff3000000000000L) { /* 7/16 <= |a| < 11/16 */ if (ix < 0x3fe6000000000000L) { id = 0; a = (2.0 * a - 1.0) / (2.0 + a); } /* 11/16 <= |a| < 19/16 */ else { id = 1; a = (a - 1.0) / (a + 1.0); } } else { /* |x| < 2.4375 */ if (ix < 0x4003800000000000L) { id = 2; a = (a - 1.5) / (1.0 + 1.5 * a); } else { id = 3; a = -1.0 / a; } } } /* end of argument reduction */ z = a * a; w = z * z; /* break sum from i=0 to 10 into odd and even poly */ s1 = z * (aT[0] + w * (aT[2] + w * (aT[4] + w * (aT[6] + w * (aT[8] + w * aT[10]))))); s2 = w * (aT[1] + w * (aT[3] + w * (aT[5] + w * (aT[7] + w * aT[9])))); if (id < 0) return (a - a * (s1 + s2)); else { z = atanhi[id] - ((a * (s1 + s2) - atanlo[id]) - a); if (hx < 0) return (-z); else return (z); } } }