Java tutorial
/* Copyright 2002-2015 CS Systmes d'Information * Licensed to CS Systmes d'Information (CS) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * CS licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.orekit.time; import java.io.Serializable; import java.util.Date; import org.apache.commons.math3.util.FastMath; import org.apache.commons.math3.util.MathArrays; import org.orekit.errors.OrekitException; import org.orekit.errors.OrekitMessages; import org.orekit.utils.Constants; /** This class represents a specific instant in time. * <p>Instances of this class are considered to be absolute in the sense * that each one represent the occurrence of some event and can be compared * to other instances or located in <em>any</em> {@link TimeScale time scale}. In * other words the different locations of an event with respect to two different * time scales (say {@link TAIScale TAI} and {@link UTCScale UTC} for example) are * simply different perspective related to a single object. Only one * <code>AbsoluteDate</code> instance is needed, both representations being available * from this single instance by specifying the time scales as parameter when calling * the ad-hoc methods.</p> * * <p>Since an instance is not bound to a specific time-scale, all methods related * to the location of the date within some time scale require to provide the time * scale as an argument. It is therefore possible to define a date in one time scale * and to use it in another one. An example of such use is to read a date from a file * in UTC and write it in another file in TAI. This can be done as follows:</p> * <pre> * DateTimeComponents utcComponents = readNextDate(); * AbsoluteDate date = new AbsoluteDate(utcComponents, TimeScalesFactory.getUTC()); * writeNextDate(date.getComponents(TimeScalesFactory.getTAI())); * </pre> * * <p>Two complementary views are available:</p> * <ul> * <li><p>location view (mainly for input/output or conversions)</p> * <p>locations represent the coordinate of one event with respect to a * {@link TimeScale time scale}. The related methods are {@link * #AbsoluteDate(DateComponents, TimeComponents, TimeScale)}, {@link * #AbsoluteDate(int, int, int, int, int, double, TimeScale)}, {@link * #AbsoluteDate(int, int, int, TimeScale)}, {@link #AbsoluteDate(Date, * TimeScale)}, {@link #createGPSDate(int, double)}, {@link * #parseCCSDSCalendarSegmentedTimeCode(byte, byte[])}, toString(){@link * #toDate(TimeScale)}, {@link #toString(TimeScale) toString(timeScale)}, * {@link #toString()}, and {@link #timeScalesOffset}.</p> * </li> * <li><p>offset view (mainly for physical computation)</p> * <p>offsets represent either the flow of time between two events * (two instances of the class) or durations. They are counted in seconds, * are continuous and could be measured using only a virtually perfect stopwatch. * The related methods are {@link #AbsoluteDate(AbsoluteDate, double)}, * {@link #parseCCSDSUnsegmentedTimeCode(byte, byte, byte[], AbsoluteDate)}, * {@link #parseCCSDSDaySegmentedTimeCode(byte, byte[], DateComponents)}, * {@link #durationFrom(AbsoluteDate)}, {@link #compareTo(AbsoluteDate)}, {@link #equals(Object)} * and {@link #hashCode()}.</p> * </li> * </ul> * <p> * A few reference epochs which are commonly used in space systems have been defined. These * epochs can be used as the basis for offset computation. The supported epochs are: * {@link #JULIAN_EPOCH}, {@link #MODIFIED_JULIAN_EPOCH}, {@link #FIFTIES_EPOCH}, * {@link #CCSDS_EPOCH}, {@link #GALILEO_EPOCH}, {@link #GPS_EPOCH}, {@link #J2000_EPOCH}, * {@link #JAVA_EPOCH}. There are also two factory methods {@link #createJulianEpoch(double)} * and {@link #createBesselianEpoch(double)} that can be used to compute other reference * epochs like J1900.0 or B1950.0. * In addition to these reference epochs, two other constants are defined for convenience: * {@link #PAST_INFINITY} and {@link #FUTURE_INFINITY}, which can be used either as dummy * dates when a date is not yet initialized, or for initialization of loops searching for * a min or max date. * </p> * <p> * Instances of the <code>AbsoluteDate</code> class are guaranteed to be immutable. * </p> * @author Luc Maisonobe * @see TimeScale * @see TimeStamped * @see ChronologicalComparator */ public class AbsoluteDate implements TimeStamped, TimeShiftable<AbsoluteDate>, Comparable<AbsoluteDate>, Serializable { /** Reference epoch for julian dates: -4712-01-01T12:00:00 Terrestrial Time. * <p>Both <code>java.util.Date</code> and {@link DateComponents} classes * follow the astronomical conventions and consider a year 0 between * years -1 and +1, hence this reference date lies in year -4712 and not * in year -4713 as can be seen in other documents or programs that obey * a different convention (for example the <code>convcal</code> utility).</p> */ public static final AbsoluteDate JULIAN_EPOCH = new AbsoluteDate(DateComponents.JULIAN_EPOCH, TimeComponents.H12, TimeScalesFactory.getTT()); /** Reference epoch for modified julian dates: 1858-11-17T00:00:00 Terrestrial Time. */ public static final AbsoluteDate MODIFIED_JULIAN_EPOCH = new AbsoluteDate(DateComponents.MODIFIED_JULIAN_EPOCH, TimeComponents.H00, TimeScalesFactory.getTT()); /** Reference epoch for 1950 dates: 1950-01-01T00:00:00 Terrestrial Time. */ public static final AbsoluteDate FIFTIES_EPOCH = new AbsoluteDate(DateComponents.FIFTIES_EPOCH, TimeComponents.H00, TimeScalesFactory.getTT()); /** Reference epoch for CCSDS Time Code Format (CCSDS 301.0-B-4): * 1958-01-01T00:00:00 International Atomic Time (<em>not</em> UTC). */ public static final AbsoluteDate CCSDS_EPOCH = new AbsoluteDate(DateComponents.CCSDS_EPOCH, TimeComponents.H00, TimeScalesFactory.getTAI()); /** Reference epoch for Galileo System Time: 1999-08-22T00:00:00 UTC. */ public static final AbsoluteDate GALILEO_EPOCH = new AbsoluteDate(DateComponents.GALILEO_EPOCH, new TimeComponents(0, 0, 32), TimeScalesFactory.getTAI()); /** Reference epoch for GPS weeks: 1980-01-06T00:00:00 GPS time. */ public static final AbsoluteDate GPS_EPOCH = new AbsoluteDate(DateComponents.GPS_EPOCH, TimeComponents.H00, TimeScalesFactory.getGPS()); /** J2000.0 Reference epoch: 2000-01-01T12:00:00 Terrestrial Time (<em>not</em> UTC). * @see #createJulianEpoch(double) * @see #createBesselianEpoch(double) */ public static final AbsoluteDate J2000_EPOCH = new AbsoluteDate(DateComponents.J2000_EPOCH, TimeComponents.H12, TimeScalesFactory.getTT()); /** Java Reference epoch: 1970-01-01T00:00:00 Universal Time Coordinate. * <p> * Between 1968-02-01 and 1972-01-01, UTC-TAI = 4.213 170 0s + (MJD - 39 126) x 0.002 592s. * As on 1970-01-01 MJD = 40587, UTC-TAI = 8.000082s * </p> */ public static final AbsoluteDate JAVA_EPOCH = new AbsoluteDate(DateComponents.JAVA_EPOCH, TimeScalesFactory.getTAI()).shiftedBy(8.000082); /** Dummy date at infinity in the past direction. */ public static final AbsoluteDate PAST_INFINITY = JAVA_EPOCH.shiftedBy(Double.NEGATIVE_INFINITY); /** Dummy date at infinity in the future direction. */ public static final AbsoluteDate FUTURE_INFINITY = JAVA_EPOCH.shiftedBy(Double.POSITIVE_INFINITY); /** Serializable UID. */ private static final long serialVersionUID = 617061803741806846L; /** Reference epoch in seconds from 2000-01-01T12:00:00 TAI. * <p>Beware, it is not {@link #J2000_EPOCH} since it is in TAI and not in TT.</p> */ private final long epoch; /** Offset from the reference epoch in seconds. */ private final double offset; /** Create an instance with a default value ({@link #J2000_EPOCH}). */ public AbsoluteDate() { epoch = J2000_EPOCH.epoch; offset = J2000_EPOCH.offset; } /** Build an instance from a location (parsed from a string) in a {@link TimeScale time scale}. * <p> * The supported formats for location are mainly the ones defined in ISO-8601 standard, * the exact subset is explained in {@link DateTimeComponents#parseDateTime(String)}, * {@link DateComponents#parseDate(String)} and {@link TimeComponents#parseTime(String)}. * </p> * <p> * As CCSDS ASCII calendar segmented time code is a trimmed down version of ISO-8601, * it is also supported by this constructor. * </p> * @param location location in the time scale, must be in a supported format * @param timeScale time scale * @exception IllegalArgumentException if location string is not in a supported format */ public AbsoluteDate(final String location, final TimeScale timeScale) { this(DateTimeComponents.parseDateTime(location), timeScale); } /** Build an instance from a location in a {@link TimeScale time scale}. * @param location location in the time scale * @param timeScale time scale */ public AbsoluteDate(final DateTimeComponents location, final TimeScale timeScale) { this(location.getDate(), location.getTime(), timeScale); } /** Build an instance from a location in a {@link TimeScale time scale}. * @param date date location in the time scale * @param time time location in the time scale * @param timeScale time scale */ public AbsoluteDate(final DateComponents date, final TimeComponents time, final TimeScale timeScale) { final double seconds = time.getSecond(); final double tsOffset = timeScale.offsetToTAI(date, time); // compute sum exactly, using Mller-Knuth TwoSum algorithm without branching // the following statements must NOT be simplified, they rely on floating point // arithmetic properties (rounding and representable numbers) // at the end, the EXACT result of addition seconds + tsOffset // is sum + residual, where sum is the closest representable number to the exact // result and residual is the missing part that does not fit in the first number final double sum = seconds + tsOffset; final double sPrime = sum - tsOffset; final double tPrime = sum - sPrime; final double deltaS = seconds - sPrime; final double deltaT = tsOffset - tPrime; final double residual = deltaS + deltaT; final long dl = (long) FastMath.floor(sum); offset = (sum - dl) + residual; epoch = 60l * ((date.getJ2000Day() * 24l + time.getHour()) * 60l + time.getMinute() - 720l) + dl; } /** Build an instance from a location in a {@link TimeScale time scale}. * @param year year number (may be 0 or negative for BC years) * @param month month number from 1 to 12 * @param day day number from 1 to 31 * @param hour hour number from 0 to 23 * @param minute minute number from 0 to 59 * @param second second number from 0.0 to 60.0 (excluded) * @param timeScale time scale * @exception IllegalArgumentException if inconsistent arguments * are given (parameters out of range) */ public AbsoluteDate(final int year, final int month, final int day, final int hour, final int minute, final double second, final TimeScale timeScale) throws IllegalArgumentException { this(new DateComponents(year, month, day), new TimeComponents(hour, minute, second), timeScale); } /** Build an instance from a location in a {@link TimeScale time scale}. * @param year year number (may be 0 or negative for BC years) * @param month month enumerate * @param day day number from 1 to 31 * @param hour hour number from 0 to 23 * @param minute minute number from 0 to 59 * @param second second number from 0.0 to 60.0 (excluded) * @param timeScale time scale * @exception IllegalArgumentException if inconsistent arguments * are given (parameters out of range) */ public AbsoluteDate(final int year, final Month month, final int day, final int hour, final int minute, final double second, final TimeScale timeScale) throws IllegalArgumentException { this(new DateComponents(year, month, day), new TimeComponents(hour, minute, second), timeScale); } /** Build an instance from a location in a {@link TimeScale time scale}. * <p>The hour is set to 00:00:00.000.</p> * @param date date location in the time scale * @param timeScale time scale * @exception IllegalArgumentException if inconsistent arguments * are given (parameters out of range) */ public AbsoluteDate(final DateComponents date, final TimeScale timeScale) throws IllegalArgumentException { this(date, TimeComponents.H00, timeScale); } /** Build an instance from a location in a {@link TimeScale time scale}. * <p>The hour is set to 00:00:00.000.</p> * @param year year number (may be 0 or negative for BC years) * @param month month number from 1 to 12 * @param day day number from 1 to 31 * @param timeScale time scale * @exception IllegalArgumentException if inconsistent arguments * are given (parameters out of range) */ public AbsoluteDate(final int year, final int month, final int day, final TimeScale timeScale) throws IllegalArgumentException { this(new DateComponents(year, month, day), TimeComponents.H00, timeScale); } /** Build an instance from a location in a {@link TimeScale time scale}. * <p>The hour is set to 00:00:00.000.</p> * @param year year number (may be 0 or negative for BC years) * @param month month enumerate * @param day day number from 1 to 31 * @param timeScale time scale * @exception IllegalArgumentException if inconsistent arguments * are given (parameters out of range) */ public AbsoluteDate(final int year, final Month month, final int day, final TimeScale timeScale) throws IllegalArgumentException { this(new DateComponents(year, month, day), TimeComponents.H00, timeScale); } /** Build an instance from a location in a {@link TimeScale time scale}. * @param location location in the time scale * @param timeScale time scale */ public AbsoluteDate(final Date location, final TimeScale timeScale) { this(new DateComponents(DateComponents.JAVA_EPOCH, (int) (location.getTime() / 86400000l)), new TimeComponents(0.001 * (location.getTime() % 86400000l)), timeScale); } /** Build an instance from an elapsed duration since to another instant. * <p>It is important to note that the elapsed duration is <em>not</em> * the difference between two readings on a time scale. As an example, * the duration between the two instants leading to the readings * 2005-12-31T23:59:59 and 2006-01-01T00:00:00 in the {@link UTCScale UTC} * time scale is <em>not</em> 1 second, but a stop watch would have measured * an elapsed duration of 2 seconds between these two instances because a leap * second was introduced at the end of 2005 in this time scale.</p> * <p>This constructor is the reverse of the {@link #durationFrom(AbsoluteDate)} * method.</p> * @param since start instant of the measured duration * @param elapsedDuration physically elapsed duration from the <code>since</code> * instant, as measured in a regular time scale * @see #durationFrom(AbsoluteDate) */ public AbsoluteDate(final AbsoluteDate since, final double elapsedDuration) { final double sum = since.offset + elapsedDuration; if (Double.isInfinite(sum)) { offset = sum; epoch = (sum < 0) ? Long.MIN_VALUE : Long.MAX_VALUE; } else { // compute sum exactly, using Mller-Knuth TwoSum algorithm without branching // the following statements must NOT be simplified, they rely on floating point // arithmetic properties (rounding and representable numbers) // at the end, the EXACT result of addition since.offset + elapsedDuration // is sum + residual, where sum is the closest representable number to the exact // result and residual is the missing part that does not fit in the first number final double oPrime = sum - elapsedDuration; final double dPrime = sum - oPrime; final double deltaO = since.offset - oPrime; final double deltaD = elapsedDuration - dPrime; final double residual = deltaO + deltaD; final long dl = (long) FastMath.floor(sum); offset = (sum - dl) + residual; epoch = since.epoch + dl; } } /** Build an instance from an apparent clock offset with respect to another * instant <em>in the perspective of a specific {@link TimeScale time scale}</em>. * <p>It is important to note that the apparent clock offset <em>is</em> the * difference between two readings on a time scale and <em>not</em> an elapsed * duration. As an example, the apparent clock offset between the two instants * leading to the readings 2005-12-31T23:59:59 and 2006-01-01T00:00:00 in the * {@link UTCScale UTC} time scale is 1 second, but the elapsed duration is 2 * seconds because a leap second has been introduced at the end of 2005 in this * time scale.</p> * <p>This constructor is the reverse of the {@link #offsetFrom(AbsoluteDate, * TimeScale)} method.</p> * @param reference reference instant * @param apparentOffset apparent clock offset from the reference instant * (difference between two readings in the specified time scale) * @param timeScale time scale with respect to which the offset is defined * @see #offsetFrom(AbsoluteDate, TimeScale) */ public AbsoluteDate(final AbsoluteDate reference, final double apparentOffset, final TimeScale timeScale) { this(new DateTimeComponents(reference.getComponents(timeScale), apparentOffset), timeScale); } /** Build an instance from a CCSDS Unsegmented Time Code (CUC). * <p> * CCSDS Unsegmented Time Code is defined in the blue book: * CCSDS Time Code Format (CCSDS 301.0-B-4) published in November 2010 * </p> * <p> * If the date to be parsed is formatted using version 3 of the standard * (CCSDS 301.0-B-3 published in 2002) or if the extension of the preamble * field introduced in version 4 of the standard is not used, then the * {@code preambleField2} parameter can be set to 0. * </p> * @param preambleField1 first byte of the field specifying the format, often * not transmitted in data interfaces, as it is constant for a given data interface * @param preambleField2 second byte of the field specifying the format * (added in revision 4 of the CCSDS standard in 2010), often not transmitted in data * interfaces, as it is constant for a given data interface (value ignored if presence * not signaled in {@code preambleField1}) * @param timeField byte array containing the time code * @param agencyDefinedEpoch reference epoch, ignored if the preamble field * specifies the {@link #CCSDS_EPOCH CCSDS reference epoch} is used (and hence * may be null in this case) * @return an instance corresponding to the specified date * @throws OrekitException if preamble is inconsistent with Unsegmented Time Code, * or if it is inconsistent with time field, or if agency epoch is needed but not provided */ public static AbsoluteDate parseCCSDSUnsegmentedTimeCode(final byte preambleField1, final byte preambleField2, final byte[] timeField, final AbsoluteDate agencyDefinedEpoch) throws OrekitException { // time code identification and reference epoch final AbsoluteDate epoch; switch (preambleField1 & 0x70) { case 0x10: // the reference epoch is CCSDS epoch 1958-01-01T00:00:00 TAI epoch = CCSDS_EPOCH; break; case 0x20: // the reference epoch is agency defined if (agencyDefinedEpoch == null) { throw new OrekitException(OrekitMessages.CCSDS_DATE_MISSING_AGENCY_EPOCH); } epoch = agencyDefinedEpoch; break; default: throw new OrekitException(OrekitMessages.CCSDS_DATE_INVALID_PREAMBLE_FIELD, formatByte(preambleField1)); } // time field lengths int coarseTimeLength = 1 + ((preambleField1 & 0x0C) >>> 2); int fineTimeLength = preambleField1 & 0x03; if ((preambleField1 & 0x80) != 0x0) { // there is an additional octet in preamble field coarseTimeLength += (preambleField2 & 0x60) >>> 5; fineTimeLength += (preambleField2 & 0x1C) >>> 2; } if (timeField.length != coarseTimeLength + fineTimeLength) { throw new OrekitException(OrekitMessages.CCSDS_DATE_INVALID_LENGTH_TIME_FIELD, timeField.length, coarseTimeLength + fineTimeLength); } double seconds = 0; for (int i = 0; i < coarseTimeLength; ++i) { seconds = seconds * 256 + toUnsigned(timeField[i]); } double subseconds = 0; for (int i = timeField.length - 1; i >= coarseTimeLength; --i) { subseconds = (subseconds + toUnsigned(timeField[i])) / 256; } return new AbsoluteDate(epoch, seconds).shiftedBy(subseconds); } /** Build an instance from a CCSDS Day Segmented Time Code (CDS). * <p> * CCSDS Day Segmented Time Code is defined in the blue book: * CCSDS Time Code Format (CCSDS 301.0-B-4) published in November 2010 * </p> * @param preambleField field specifying the format, often not transmitted in * data interfaces, as it is constant for a given data interface * @param timeField byte array containing the time code * @param agencyDefinedEpoch reference epoch, ignored if the preamble field * specifies the {@link #CCSDS_EPOCH CCSDS reference epoch} is used (and hence * may be null in this case) * @return an instance corresponding to the specified date * @throws OrekitException if preamble is inconsistent with Day Segmented Time Code, * or if it is inconsistent with time field, or if agency epoch is needed but not provided, * or it UTC time scale cannot be retrieved */ public static AbsoluteDate parseCCSDSDaySegmentedTimeCode(final byte preambleField, final byte[] timeField, final DateComponents agencyDefinedEpoch) throws OrekitException { // time code identification if ((preambleField & 0xF0) != 0x40) { throw new OrekitException(OrekitMessages.CCSDS_DATE_INVALID_PREAMBLE_FIELD, formatByte(preambleField)); } // reference epoch final DateComponents epoch; if ((preambleField & 0x08) == 0x00) { // the reference epoch is CCSDS epoch 1958-01-01T00:00:00 TAI epoch = DateComponents.CCSDS_EPOCH; } else { // the reference epoch is agency defined if (agencyDefinedEpoch == null) { throw new OrekitException(OrekitMessages.CCSDS_DATE_MISSING_AGENCY_EPOCH); } epoch = agencyDefinedEpoch; } // time field lengths final int daySegmentLength = ((preambleField & 0x04) == 0x0) ? 2 : 3; final int subMillisecondLength = (preambleField & 0x03) << 1; if (subMillisecondLength == 6) { throw new OrekitException(OrekitMessages.CCSDS_DATE_INVALID_PREAMBLE_FIELD, formatByte(preambleField)); } if (timeField.length != daySegmentLength + 4 + subMillisecondLength) { throw new OrekitException(OrekitMessages.CCSDS_DATE_INVALID_LENGTH_TIME_FIELD, timeField.length, daySegmentLength + 4 + subMillisecondLength); } int i = 0; int day = 0; while (i < daySegmentLength) { day = day * 256 + toUnsigned(timeField[i++]); } long milliInDay = 0l; while (i < daySegmentLength + 4) { milliInDay = milliInDay * 256 + toUnsigned(timeField[i++]); } final int milli = (int) (milliInDay % 1000l); final int seconds = (int) ((milliInDay - milli) / 1000l); double subMilli = 0; double divisor = 1; while (i < timeField.length) { subMilli = subMilli * 256 + toUnsigned(timeField[i++]); divisor *= 1000; } final DateComponents date = new DateComponents(epoch, day); final TimeComponents time = new TimeComponents(seconds); return new AbsoluteDate(date, time, TimeScalesFactory.getUTC()) .shiftedBy(milli * 1.0e-3 + subMilli / divisor); } /** Build an instance from a CCSDS Calendar Segmented Time Code (CCS). * <p> * CCSDS Calendar Segmented Time Code is defined in the blue book: * CCSDS Time Code Format (CCSDS 301.0-B-4) published in November 2010 * </p> * @param preambleField field specifying the format, often not transmitted in * data interfaces, as it is constant for a given data interface * @param timeField byte array containing the time code * @return an instance corresponding to the specified date * @throws OrekitException if preamble is inconsistent with Calendar Segmented Time Code, * or if it is inconsistent with time field, or it UTC time scale cannot be retrieved */ public static AbsoluteDate parseCCSDSCalendarSegmentedTimeCode(final byte preambleField, final byte[] timeField) throws OrekitException { // time code identification if ((preambleField & 0xF0) != 0x50) { throw new OrekitException(OrekitMessages.CCSDS_DATE_INVALID_PREAMBLE_FIELD, formatByte(preambleField)); } // time field length final int length = 7 + (preambleField & 0x07); if (length == 14) { throw new OrekitException(OrekitMessages.CCSDS_DATE_INVALID_PREAMBLE_FIELD, formatByte(preambleField)); } if (timeField.length != length) { throw new OrekitException(OrekitMessages.CCSDS_DATE_INVALID_LENGTH_TIME_FIELD, timeField.length, length); } // date part in the first four bytes final DateComponents date; if ((preambleField & 0x08) == 0x00) { // month of year and day of month variation date = new DateComponents(toUnsigned(timeField[0]) * 256 + toUnsigned(timeField[1]), toUnsigned(timeField[2]), toUnsigned(timeField[3])); } else { // day of year variation date = new DateComponents(toUnsigned(timeField[0]) * 256 + toUnsigned(timeField[1]), toUnsigned(timeField[2]) * 256 + toUnsigned(timeField[3])); } // time part from bytes 5 to last (between 7 and 13 depending on precision) final TimeComponents time = new TimeComponents(toUnsigned(timeField[4]), toUnsigned(timeField[5]), toUnsigned(timeField[6])); double subSecond = 0; double divisor = 1; for (int i = 7; i < length; ++i) { subSecond = subSecond * 100 + toUnsigned(timeField[i]); divisor *= 100; } return new AbsoluteDate(date, time, TimeScalesFactory.getUTC()).shiftedBy(subSecond / divisor); } /** Decode a signed byte as an unsigned int value. * @param b byte to decode * @return an unsigned int value */ private static int toUnsigned(final byte b) { final int i = (int) b; return (i < 0) ? 256 + i : i; } /** Format a byte as an hex string for error messages. * @param data byte to format * @return a formatted string */ private static String formatByte(final byte data) { return "0x" + Integer.toHexString(data).toUpperCase(); } /** Build an instance corresponding to a Julian Day date. * @param jd Julian day * @param secondsSinceNoon seconds in the Julian day * (BEWARE, Julian days start at noon, so 0.0 is noon) * @param timeScale time scale in which the seconds in day are defined * @return a new instant */ public static AbsoluteDate createJDDate(final int jd, final double secondsSinceNoon, final TimeScale timeScale) { return new AbsoluteDate(new DateComponents(DateComponents.JULIAN_EPOCH, jd), TimeComponents.H12, timeScale) .shiftedBy(secondsSinceNoon); } /** Build an instance corresponding to a Modified Julian Day date. * @param mjd modified Julian day * @param secondsInDay seconds in the day * @param timeScale time scale in which the seconds in day are defined * @return a new instant */ public static AbsoluteDate createMJDDate(final int mjd, final double secondsInDay, final TimeScale timeScale) { return new AbsoluteDate(new DateComponents(DateComponents.MODIFIED_JULIAN_EPOCH, mjd), new TimeComponents(secondsInDay), timeScale); } /** Build an instance corresponding to a GPS date. * <p>GPS dates are provided as a week number starting at * {@link #GPS_EPOCH GPS epoch} and as a number of milliseconds * since week start.</p> * @param weekNumber week number since {@link #GPS_EPOCH GPS epoch} * @param milliInWeek number of milliseconds since week start * @return a new instant */ public static AbsoluteDate createGPSDate(final int weekNumber, final double milliInWeek) { final int day = (int) FastMath.floor(milliInWeek / (1000.0 * Constants.JULIAN_DAY)); final double secondsInDay = milliInWeek / 1000.0 - day * Constants.JULIAN_DAY; return new AbsoluteDate(new DateComponents(DateComponents.GPS_EPOCH, weekNumber * 7 + day), new TimeComponents(secondsInDay), TimeScalesFactory.getGPS()); } /** Build an instance corresponding to a Julian Epoch (JE). * <p>According to Lieske paper: <a * href="http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?1979A%26A....73..282L&defaultprint=YES&filetype=.pdf."> * Precession Matrix Based on IAU (1976) System of Astronomical Constants</a>, Astronomy and Astrophysics, * vol. 73, no. 3, Mar. 1979, p. 282-284, Julian Epoch is related to Julian Ephemeris Date as:</p> * <pre> * JE = 2000.0 + (JED - 2451545.0) / 365.25 * </pre> * <p> * This method reverts the formula above and computes an {@code AbsoluteDate} from the Julian Epoch. * </p> * @param julianEpoch Julian epoch, like 2000.0 for defining the classical reference J2000.0 * @return a new instant * @see #J2000_EPOCH * @see #createBesselianEpoch(double) */ public static AbsoluteDate createJulianEpoch(final double julianEpoch) { return new AbsoluteDate(J2000_EPOCH, Constants.JULIAN_YEAR * (julianEpoch - 2000.0)); } /** Build an instance corresponding to a Besselian Epoch (BE). * <p>According to Lieske paper: <a * href="http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?1979A%26A....73..282L&defaultprint=YES&filetype=.pdf."> * Precession Matrix Based on IAU (1976) System of Astronomical Constants</a>, Astronomy and Astrophysics, * vol. 73, no. 3, Mar. 1979, p. 282-284, Besselian Epoch is related to Julian Ephemeris Date as:</p> * <pre> * BE = 1900.0 + (JED - 2415020.31352) / 365.242198781 * </pre> * <p> * This method reverts the formula above and computes an {@code AbsoluteDate} from the Besselian Epoch. * </p> * @param besselianEpoch Besselian epoch, like 1950 for defining the classical reference B1950.0 * @return a new instant * @see #createJulianEpoch(double) */ public static AbsoluteDate createBesselianEpoch(final double besselianEpoch) { return new AbsoluteDate(J2000_EPOCH, MathArrays.linearCombination(Constants.BESSELIAN_YEAR, besselianEpoch - 1900, Constants.JULIAN_DAY, -36525, Constants.JULIAN_DAY, 0.31352)); } /** Get a time-shifted date. * <p> * Calling this method is equivalent to call <code>new AbsoluteDate(this, dt)</code>. * </p> * @param dt time shift in seconds * @return a new date, shifted with respect to instance (which is immutable) * @see org.orekit.utils.PVCoordinates#shiftedBy(double) * @see org.orekit.attitudes.Attitude#shiftedBy(double) * @see org.orekit.orbits.Orbit#shiftedBy(double) * @see org.orekit.propagation.SpacecraftState#shiftedBy(double) */ public AbsoluteDate shiftedBy(final double dt) { return new AbsoluteDate(this, dt); } /** Compute the physically elapsed duration between two instants. * <p>The returned duration is the number of seconds physically * elapsed between the two instants, measured in a regular time * scale with respect to surface of the Earth (i.e either the {@link * TAIScale TAI scale}, the {@link TTScale TT scale} or the {@link * GPSScale GPS scale}). It is the only method that gives a * duration with a physical meaning.</p> * <p>This method gives the same result (with less computation) * as calling {@link #offsetFrom(AbsoluteDate, TimeScale)} * with a second argument set to one of the regular scales cited * above.</p> * <p>This method is the reverse of the {@link #AbsoluteDate(AbsoluteDate, * double)} constructor.</p> * @param instant instant to subtract from the instance * @return offset in seconds between the two instants (positive * if the instance is posterior to the argument) * @see #offsetFrom(AbsoluteDate, TimeScale) * @see #AbsoluteDate(AbsoluteDate, double) */ public double durationFrom(final AbsoluteDate instant) { return (epoch - instant.epoch) + (offset - instant.offset); } /** Compute the apparent clock offset between two instant <em>in the * perspective of a specific {@link TimeScale time scale}</em>. * <p>The offset is the number of seconds counted in the given * time scale between the locations of the two instants, with * all time scale irregularities removed (i.e. considering all * days are exactly 86400 seconds long). This method will give * a result that may not have a physical meaning if the time scale * is irregular. For example since a leap second was introduced at * the end of 2005, the apparent offset between 2005-12-31T23:59:59 * and 2006-01-01T00:00:00 is 1 second, but the physical duration * of the corresponding time interval as returned by the {@link * #durationFrom(AbsoluteDate)} method is 2 seconds.</p> * <p>This method is the reverse of the {@link #AbsoluteDate(AbsoluteDate, * double, TimeScale)} constructor.</p> * @param instant instant to subtract from the instance * @param timeScale time scale with respect to which the offset should * be computed * @return apparent clock offset in seconds between the two instants * (positive if the instance is posterior to the argument) * @see #durationFrom(AbsoluteDate) * @see #AbsoluteDate(AbsoluteDate, double, TimeScale) */ public double offsetFrom(final AbsoluteDate instant, final TimeScale timeScale) { final long elapsedDurationA = epoch - instant.epoch; final double elapsedDurationB = (offset + timeScale.offsetFromTAI(this)) - (instant.offset + timeScale.offsetFromTAI(instant)); return elapsedDurationA + elapsedDurationB; } /** Compute the offset between two time scales at the current instant. * <p>The offset is defined as <i>l?-l</i> * where <i>l?</i> is the location of the instant in * the <code>scale1</code> time scale and <i>l</i> is the * location of the instant in the <code>scale2</code> time scale.</p> * @param scale1 first time scale * @param scale2 second time scale * @return offset in seconds between the two time scales at the * current instant */ public double timeScalesOffset(final TimeScale scale1, final TimeScale scale2) { return scale1.offsetFromTAI(this) - scale2.offsetFromTAI(this); } /** Convert the instance to a Java {@link java.util.Date Date}. * <p>Conversion to the Date class induces a loss of precision because * the Date class does not provide sub-millisecond information. Java Dates * are considered to be locations in some times scales.</p> * @param timeScale time scale to use * @return a {@link java.util.Date Date} instance representing the location * of the instant in the time scale */ public Date toDate(final TimeScale timeScale) { final double time = epoch + (offset + timeScale.offsetFromTAI(this)); return new Date(FastMath.round((time + 10957.5 * 86400.0) * 1000)); } /** Split the instance into date/time components. * @param timeScale time scale to use * @return date/time components */ public DateTimeComponents getComponents(final TimeScale timeScale) { // compute offset from 2000-01-01T00:00:00 in specified time scale exactly, // using Mller-Knuth TwoSum algorithm without branching // the following statements must NOT be simplified, they rely on floating point // arithmetic properties (rounding and representable numbers) // at the end, the EXACT result of addition offset + timeScale.offsetFromTAI(this) // is sum + residual, where sum is the closest representable number to the exact // result and residual is the missing part that does not fit in the first number final double taiOffset = timeScale.offsetFromTAI(this); final double sum = offset + taiOffset; final double oPrime = sum - taiOffset; final double dPrime = sum - oPrime; final double deltaO = offset - oPrime; final double deltaD = taiOffset - dPrime; final double residual = deltaO + deltaD; // split date and time final long carry = (long) FastMath.floor(sum); double offset2000B = (sum - carry) + residual; long offset2000A = epoch + carry + 43200l; if (offset2000B < 0) { offset2000A -= 1; offset2000B += 1; } long time = offset2000A % 86400l; if (time < 0l) { time += 86400l; } final int date = (int) ((offset2000A - time) / 86400l); // extract calendar elements final DateComponents dateComponents = new DateComponents(DateComponents.J2000_EPOCH, date); TimeComponents timeComponents = new TimeComponents((int) time, offset2000B); if (timeScale instanceof UTCScale) { final UTCScale utc = (UTCScale) timeScale; if (utc.insideLeap(this)) { // fix the seconds number to take the leap into account timeComponents = new TimeComponents(timeComponents.getHour(), timeComponents.getMinute(), timeComponents.getSecond() + utc.getLeap(this)); } } // build the components return new DateTimeComponents(dateComponents, timeComponents); } /** Compare the instance with another date. * @param date other date to compare the instance to * @return a negative integer, zero, or a positive integer as this date * is before, simultaneous, or after the specified date. */ public int compareTo(final AbsoluteDate date) { return Double.compare(durationFrom(date), 0); } /** {@inheritDoc} */ public AbsoluteDate getDate() { return this; } /** Check if the instance represent the same time as another instance. * @param date other date * @return true if the instance and the other date refer to the same instant */ public boolean equals(final Object date) { if (date == this) { // first fast check return true; } if ((date != null) && (date instanceof AbsoluteDate)) { return durationFrom((AbsoluteDate) date) == 0; } return false; } /** Get a hashcode for this date. * @return hashcode */ public int hashCode() { final long l = Double.doubleToLongBits(durationFrom(J2000_EPOCH)); return (int) (l ^ (l >>> 32)); } /** Get a String representation of the instant location in UTC time scale. * @return a string representation of the instance, * in ISO-8601 format with milliseconds accuracy */ public String toString() { try { return toString(TimeScalesFactory.getUTC()); } catch (OrekitException oe) { throw new RuntimeException(oe); } } /** Get a String representation of the instant location. * @param timeScale time scale to use * @return a string representation of the instance, * in ISO-8601 format with milliseconds accuracy */ public String toString(final TimeScale timeScale) { return getComponents(timeScale).toString(); } }