org.apache.commons.math3.util.MathArrays.java Source code

Java tutorial

Introduction

Here is the source code for org.apache.commons.math3.util.MathArrays.java

Source

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.util;

import java.util.List;
import java.util.ArrayList;
import java.util.Comparator;
import java.util.Collections;

import org.apache.commons.math3.exception.DimensionMismatchException;
import org.apache.commons.math3.exception.MathInternalError;
import org.apache.commons.math3.exception.NonMonotonicSequenceException;
import org.apache.commons.math3.exception.NotPositiveException;
import org.apache.commons.math3.exception.NotStrictlyPositiveException;
import org.apache.commons.math3.exception.NullArgumentException;
import org.apache.commons.math3.exception.MathIllegalArgumentException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.exception.MathArithmeticException;

/**
 * Arrays utilities.
 *
 * @since 3.0
 * @version $Id: MathArrays.java 1422313 2012-12-15 18:53:41Z psteitz $
 */
public class MathArrays {
    /** Factor used for splitting double numbers: n = 2^27 + 1 (i.e. {@value}). */
    private static final int SPLIT_FACTOR = 0x8000001;

    /**
     * Private constructor.
     */
    private MathArrays() {
    }

    /**
     * Real-valued function that operate on an array or a part of it.
     * @since 3.1
     */
    public interface Function {
        /**
         * Operates on an entire array.
         *
         * @param array Array to operate on.
         * @return the result of the operation.
         */
        double evaluate(double[] array);

        /**
         * @param array Array to operate on.
         * @param startIndex Index of the first element to take into account.
         * @param numElements Number of elements to take into account.
         * @return the result of the operation.
         */
        double evaluate(double[] array, int startIndex, int numElements);
    }

    /**
     * Creates an array whose contents will be the element-by-element
     * addition of the arguments.
     *
     * @param a First term of the addition.
     * @param b Second term of the addition.
     * @return a new array {@code r} where {@code r[i] = a[i] + b[i]}.
     * @throws DimensionMismatchException if the array lengths differ.
     * @since 3.1
     */
    public static double[] ebeAdd(double[] a, double[] b) {
        if (a.length != b.length) {
            throw new DimensionMismatchException(a.length, b.length);
        }

        final double[] result = a.clone();
        for (int i = 0; i < a.length; i++) {
            result[i] += b[i];
        }
        return result;
    }

    /**
     * Creates an array whose contents will be the element-by-element
     * subtraction of the second argument from the first.
     *
     * @param a First term.
     * @param b Element to be subtracted.
     * @return a new array {@code r} where {@code r[i] = a[i] - b[i]}.
     * @throws DimensionMismatchException if the array lengths differ.
     * @since 3.1
     */
    public static double[] ebeSubtract(double[] a, double[] b) {
        if (a.length != b.length) {
            throw new DimensionMismatchException(a.length, b.length);
        }

        final double[] result = a.clone();
        for (int i = 0; i < a.length; i++) {
            result[i] -= b[i];
        }
        return result;
    }

    /**
     * Creates an array whose contents will be the element-by-element
     * multiplication of the arguments.
     *
     * @param a First factor of the multiplication.
     * @param b Second factor of the multiplication.
     * @return a new array {@code r} where {@code r[i] = a[i] * b[i]}.
     * @throws DimensionMismatchException if the array lengths differ.
     * @since 3.1
     */
    public static double[] ebeMultiply(double[] a, double[] b) {
        if (a.length != b.length) {
            throw new DimensionMismatchException(a.length, b.length);
        }

        final double[] result = a.clone();
        for (int i = 0; i < a.length; i++) {
            result[i] *= b[i];
        }
        return result;
    }

    /**
     * Creates an array whose contents will be the element-by-element
     * division of the first argument by the second.
     *
     * @param a Numerator of the division.
     * @param b Denominator of the division.
     * @return a new array {@code r} where {@code r[i] = a[i] / b[i]}.
     * @throws DimensionMismatchException if the array lengths differ.
     * @since 3.1
     */
    public static double[] ebeDivide(double[] a, double[] b) {
        if (a.length != b.length) {
            throw new DimensionMismatchException(a.length, b.length);
        }

        final double[] result = a.clone();
        for (int i = 0; i < a.length; i++) {
            result[i] /= b[i];
        }
        return result;
    }

    /**
     * Calculates the L<sub>1</sub> (sum of abs) distance between two points.
     *
     * @param p1 the first point
     * @param p2 the second point
     * @return the L<sub>1</sub> distance between the two points
     */
    public static double distance1(double[] p1, double[] p2) {
        double sum = 0;
        for (int i = 0; i < p1.length; i++) {
            sum += FastMath.abs(p1[i] - p2[i]);
        }
        return sum;
    }

    /**
     * Calculates the L<sub>1</sub> (sum of abs) distance between two points.
     *
     * @param p1 the first point
     * @param p2 the second point
     * @return the L<sub>1</sub> distance between the two points
     */
    public static int distance1(int[] p1, int[] p2) {
        int sum = 0;
        for (int i = 0; i < p1.length; i++) {
            sum += FastMath.abs(p1[i] - p2[i]);
        }
        return sum;
    }

    /**
     * Calculates the L<sub>2</sub> (Euclidean) distance between two points.
     *
     * @param p1 the first point
     * @param p2 the second point
     * @return the L<sub>2</sub> distance between the two points
     */
    public static double distance(double[] p1, double[] p2) {
        double sum = 0;
        for (int i = 0; i < p1.length; i++) {
            final double dp = p1[i] - p2[i];
            sum += dp * dp;
        }
        return FastMath.sqrt(sum);
    }

    /**
     * Calculates the L<sub>2</sub> (Euclidean) distance between two points.
     *
     * @param p1 the first point
     * @param p2 the second point
     * @return the L<sub>2</sub> distance between the two points
     */
    public static double distance(int[] p1, int[] p2) {
        double sum = 0;
        for (int i = 0; i < p1.length; i++) {
            final double dp = p1[i] - p2[i];
            sum += dp * dp;
        }
        return FastMath.sqrt(sum);
    }

    /**
     * Calculates the L<sub>&infin;</sub> (max of abs) distance between two points.
     *
     * @param p1 the first point
     * @param p2 the second point
     * @return the L<sub>&infin;</sub> distance between the two points
     */
    public static double distanceInf(double[] p1, double[] p2) {
        double max = 0;
        for (int i = 0; i < p1.length; i++) {
            max = FastMath.max(max, FastMath.abs(p1[i] - p2[i]));
        }
        return max;
    }

    /**
     * Calculates the L<sub>&infin;</sub> (max of abs) distance between two points.
     *
     * @param p1 the first point
     * @param p2 the second point
     * @return the L<sub>&infin;</sub> distance between the two points
     */
    public static int distanceInf(int[] p1, int[] p2) {
        int max = 0;
        for (int i = 0; i < p1.length; i++) {
            max = FastMath.max(max, FastMath.abs(p1[i] - p2[i]));
        }
        return max;
    }

    /**
     * Specification of ordering direction.
     */
    public static enum OrderDirection {
        /** Constant for increasing direction. */
        INCREASING,
        /** Constant for decreasing direction. */
        DECREASING
    }

    /**
     * Check that an array is monotonically increasing or decreasing.
     *
     * @param <T> the type of the elements in the specified array
     * @param val Values.
     * @param dir Ordering direction.
     * @param strict Whether the order should be strict.
     * @return {@code true} if sorted, {@code false} otherwise.
     */
    public static <T extends Comparable<? super T>> boolean isMonotonic(T[] val, OrderDirection dir,
            boolean strict) {
        T previous = val[0];
        final int max = val.length;
        for (int i = 1; i < max; i++) {
            final int comp;
            switch (dir) {
            case INCREASING:
                comp = previous.compareTo(val[i]);
                if (strict) {
                    if (comp >= 0) {
                        return false;
                    }
                } else {
                    if (comp > 0) {
                        return false;
                    }
                }
                break;
            case DECREASING:
                comp = val[i].compareTo(previous);
                if (strict) {
                    if (comp >= 0) {
                        return false;
                    }
                } else {
                    if (comp > 0) {
                        return false;
                    }
                }
                break;
            default:
                // Should never happen.
                throw new MathInternalError();
            }

            previous = val[i];
        }
        return true;
    }

    /**
     * Check that an array is monotonically increasing or decreasing.
     *
     * @param val Values.
     * @param dir Ordering direction.
     * @param strict Whether the order should be strict.
     * @return {@code true} if sorted, {@code false} otherwise.
     */
    public static boolean isMonotonic(double[] val, OrderDirection dir, boolean strict) {
        return checkOrder(val, dir, strict, false);
    }

    /**
     * Check that the given array is sorted.
     *
     * @param val Values.
     * @param dir Ordering direction.
     * @param strict Whether the order should be strict.
     * @param abort Whether to throw an exception if the check fails.
     * @return {@code true} if the array is sorted.
     * @throws NonMonotonicSequenceException if the array is not sorted
     * and {@code abort} is {@code true}.
     */
    public static boolean checkOrder(double[] val, OrderDirection dir, boolean strict, boolean abort)
            throws NonMonotonicSequenceException {
        double previous = val[0];
        final int max = val.length;

        int index;
        ITEM: for (index = 1; index < max; index++) {
            switch (dir) {
            case INCREASING:
                if (strict) {
                    if (val[index] <= previous) {
                        break ITEM;
                    }
                } else {
                    if (val[index] < previous) {
                        break ITEM;
                    }
                }
                break;
            case DECREASING:
                if (strict) {
                    if (val[index] >= previous) {
                        break ITEM;
                    }
                } else {
                    if (val[index] > previous) {
                        break ITEM;
                    }
                }
                break;
            default:
                // Should never happen.
                throw new MathInternalError();
            }

            previous = val[index];
        }

        if (index == max) {
            // Loop completed.
            return true;
        }

        // Loop early exit means wrong ordering.
        if (abort) {
            throw new NonMonotonicSequenceException(val[index], previous, index, dir, strict);
        } else {
            return false;
        }
    }

    /**
     * Check that the given array is sorted.
     *
     * @param val Values.
     * @param dir Ordering direction.
     * @param strict Whether the order should be strict.
     * @throws NonMonotonicSequenceException if the array is not sorted.
     * @since 2.2
     */
    public static void checkOrder(double[] val, OrderDirection dir, boolean strict)
            throws NonMonotonicSequenceException {
        checkOrder(val, dir, strict, true);
    }

    /**
     * Check that the given array is sorted in strictly increasing order.
     *
     * @param val Values.
     * @throws NonMonotonicSequenceException if the array is not sorted.
     * @since 2.2
     */
    public static void checkOrder(double[] val) throws NonMonotonicSequenceException {
        checkOrder(val, OrderDirection.INCREASING, true);
    }

    /**
     * Throws DimensionMismatchException if the input array is not rectangular.
     *
     * @param in array to be tested
     * @throws NullArgumentException if input array is null
     * @throws DimensionMismatchException if input array is not rectangular
     * @since 3.1
     */
    public static void checkRectangular(final long[][] in)
            throws NullArgumentException, DimensionMismatchException {
        MathUtils.checkNotNull(in);
        for (int i = 1; i < in.length; i++) {
            if (in[i].length != in[0].length) {
                throw new DimensionMismatchException(LocalizedFormats.DIFFERENT_ROWS_LENGTHS, in[i].length,
                        in[0].length);
            }
        }
    }

    /**
     * Check that all entries of the input array are strictly positive.
     *
     * @param in Array to be tested
     * @throws NotStrictlyPositiveException if any entries of the array are not
     * strictly positive.
     * @since 3.1
     */
    public static void checkPositive(final double[] in) throws NotStrictlyPositiveException {
        for (int i = 0; i < in.length; i++) {
            if (in[i] <= 0) {
                throw new NotStrictlyPositiveException(in[i]);
            }
        }
    }

    /**
     * Check that all entries of the input array are >= 0.
     *
     * @param in Array to be tested
     * @throws NotPositiveException if any array entries are less than 0.
     * @since 3.1
     */
    public static void checkNonNegative(final long[] in) throws NotPositiveException {
        for (int i = 0; i < in.length; i++) {
            if (in[i] < 0) {
                throw new NotPositiveException(in[i]);
            }
        }
    }

    /**
     * Check all entries of the input array are >= 0.
     *
     * @param in Array to be tested
     * @throws NotPositiveException if any array entries are less than 0.
     * @since 3.1
     */
    public static void checkNonNegative(final long[][] in) throws NotPositiveException {
        for (int i = 0; i < in.length; i++) {
            for (int j = 0; j < in[i].length; j++) {
                if (in[i][j] < 0) {
                    throw new NotPositiveException(in[i][j]);
                }
            }
        }
    }

    /**
     * Returns the Cartesian norm (2-norm), handling both overflow and underflow.
     * Translation of the minpack enorm subroutine.
     *
     * The redistribution policy for MINPACK is available
     * <a href="http://www.netlib.org/minpack/disclaimer">here</a>, for
     * convenience, it is reproduced below.</p>
     *
     * <table border="0" width="80%" cellpadding="10" align="center" bgcolor="#E0E0E0">
     * <tr><td>
     *    Minpack Copyright Notice (1999) University of Chicago.
     *    All rights reserved
     * </td></tr>
     * <tr><td>
     * Redistribution and use in source and binary forms, with or without
     * modification, are permitted provided that the following conditions
     * are met:
     * <ol>
     *  <li>Redistributions of source code must retain the above copyright
     *      notice, this list of conditions and the following disclaimer.</li>
     * <li>Redistributions in binary form must reproduce the above
     *     copyright notice, this list of conditions and the following
     *     disclaimer in the documentation and/or other materials provided
     *     with the distribution.</li>
     * <li>The end-user documentation included with the redistribution, if any,
     *     must include the following acknowledgment:
     *     {@code This product includes software developed by the University of
     *           Chicago, as Operator of Argonne National Laboratory.}
     *     Alternately, this acknowledgment may appear in the software itself,
     *     if and wherever such third-party acknowledgments normally appear.</li>
     * <li><strong>WARRANTY DISCLAIMER. THE SOFTWARE IS SUPPLIED "AS IS"
     *     WITHOUT WARRANTY OF ANY KIND. THE COPYRIGHT HOLDER, THE
     *     UNITED STATES, THE UNITED STATES DEPARTMENT OF ENERGY, AND
     *     THEIR EMPLOYEES: (1) DISCLAIM ANY WARRANTIES, EXPRESS OR
     *     IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES
     *     OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE
     *     OR NON-INFRINGEMENT, (2) DO NOT ASSUME ANY LEGAL LIABILITY
     *     OR RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS, OR
     *     USEFULNESS OF THE SOFTWARE, (3) DO NOT REPRESENT THAT USE OF
     *     THE SOFTWARE WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS, (4)
     *     DO NOT WARRANT THAT THE SOFTWARE WILL FUNCTION
     *     UNINTERRUPTED, THAT IT IS ERROR-FREE OR THAT ANY ERRORS WILL
     *     BE CORRECTED.</strong></li>
     * <li><strong>LIMITATION OF LIABILITY. IN NO EVENT WILL THE COPYRIGHT
     *     HOLDER, THE UNITED STATES, THE UNITED STATES DEPARTMENT OF
     *     ENERGY, OR THEIR EMPLOYEES: BE LIABLE FOR ANY INDIRECT,
     *     INCIDENTAL, CONSEQUENTIAL, SPECIAL OR PUNITIVE DAMAGES OF
     *     ANY KIND OR NATURE, INCLUDING BUT NOT LIMITED TO LOSS OF
     *     PROFITS OR LOSS OF DATA, FOR ANY REASON WHATSOEVER, WHETHER
     *     SUCH LIABILITY IS ASSERTED ON THE BASIS OF CONTRACT, TORT
     *     (INCLUDING NEGLIGENCE OR STRICT LIABILITY), OR OTHERWISE,
     *     EVEN IF ANY OF SAID PARTIES HAS BEEN WARNED OF THE
     *     POSSIBILITY OF SUCH LOSS OR DAMAGES.</strong></li>
     * <ol></td></tr>
     * </table>
     *
     * @param v Vector of doubles.
     * @return the 2-norm of the vector.
     * @since 2.2
     */
    public static double safeNorm(double[] v) {
        double rdwarf = 3.834e-20;
        double rgiant = 1.304e+19;
        double s1 = 0;
        double s2 = 0;
        double s3 = 0;
        double x1max = 0;
        double x3max = 0;
        double floatn = v.length;
        double agiant = rgiant / floatn;
        for (int i = 0; i < v.length; i++) {
            double xabs = Math.abs(v[i]);
            if (xabs < rdwarf || xabs > agiant) {
                if (xabs > rdwarf) {
                    if (xabs > x1max) {
                        double r = x1max / xabs;
                        s1 = 1 + s1 * r * r;
                        x1max = xabs;
                    } else {
                        double r = xabs / x1max;
                        s1 += r * r;
                    }
                } else {
                    if (xabs > x3max) {
                        double r = x3max / xabs;
                        s3 = 1 + s3 * r * r;
                        x3max = xabs;
                    } else {
                        if (xabs != 0) {
                            double r = xabs / x3max;
                            s3 += r * r;
                        }
                    }
                }
            } else {
                s2 += xabs * xabs;
            }
        }
        double norm;
        if (s1 != 0) {
            norm = x1max * Math.sqrt(s1 + (s2 / x1max) / x1max);
        } else {
            if (s2 == 0) {
                norm = x3max * Math.sqrt(s3);
            } else {
                if (s2 >= x3max) {
                    norm = Math.sqrt(s2 * (1 + (x3max / s2) * (x3max * s3)));
                } else {
                    norm = Math.sqrt(x3max * ((s2 / x3max) + (x3max * s3)));
                }
            }
        }
        return norm;
    }

    /**
     * Sort an array in ascending order in place and perform the same reordering
     * of entries on other arrays. For example, if
     * {@code x = [3, 1, 2], y = [1, 2, 3]} and {@code z = [0, 5, 7]}, then
     * {@code sortInPlace(x, y, z)} will update {@code x} to {@code [1, 2, 3]},
     * {@code y} to {@code [2, 3, 1]} and {@code z} to {@code [5, 7, 0]}.
     *
     * @param x Array to be sorted and used as a pattern for permutation
     * of the other arrays.
     * @param yList Set of arrays whose permutations of entries will follow
     * those performed on {@code x}.
     * @throws DimensionMismatchException if any {@code y} is not the same
     * size as {@code x}.
     * @throws NullArgumentException if {@code x} or any {@code y} is null.
     * @since 3.0
     */
    public static void sortInPlace(double[] x, double[]... yList)
            throws DimensionMismatchException, NullArgumentException {
        sortInPlace(x, OrderDirection.INCREASING, yList);
    }

    /**
     * Sort an array in place and perform the same reordering of entries on
     * other arrays.  This method works the same as the other
     * {@link #sortInPlace(double[], double[][]) sortInPlace} method, but
     * allows the order of the sort to be provided in the {@code dir}
     * parameter.
     *
     * @param x Array to be sorted and used as a pattern for permutation
     * of the other arrays.
     * @param dir Order direction.
     * @param yList Set of arrays whose permutations of entries will follow
     * those performed on {@code x}.
     * @throws DimensionMismatchException if any {@code y} is not the same
     * size as {@code x}.
     * @throws NullArgumentException if {@code x} or any {@code y} is null
     * @since 3.0
     */
    public static void sortInPlace(double[] x, final OrderDirection dir, double[]... yList)
            throws NullArgumentException, DimensionMismatchException {
        if (x == null) {
            throw new NullArgumentException();
        }

        final int len = x.length;
        final List<Pair<Double, double[]>> list = new ArrayList<Pair<Double, double[]>>(len);

        final int yListLen = yList.length;
        for (int i = 0; i < len; i++) {
            final double[] yValues = new double[yListLen];
            for (int j = 0; j < yListLen; j++) {
                double[] y = yList[j];
                if (y == null) {
                    throw new NullArgumentException();
                }
                if (y.length != len) {
                    throw new DimensionMismatchException(y.length, len);
                }
                yValues[j] = y[i];
            }
            list.add(new Pair<Double, double[]>(x[i], yValues));
        }

        final Comparator<Pair<Double, double[]>> comp = new Comparator<Pair<Double, double[]>>() {
            public int compare(Pair<Double, double[]> o1, Pair<Double, double[]> o2) {
                int val;
                switch (dir) {
                case INCREASING:
                    val = o1.getKey().compareTo(o2.getKey());
                    break;
                case DECREASING:
                    val = o2.getKey().compareTo(o1.getKey());
                    break;
                default:
                    // Should never happen.
                    throw new MathInternalError();
                }
                return val;
            }
        };

        Collections.sort(list, comp);

        for (int i = 0; i < len; i++) {
            final Pair<Double, double[]> e = list.get(i);
            x[i] = e.getKey();
            final double[] yValues = e.getValue();
            for (int j = 0; j < yListLen; j++) {
                yList[j][i] = yValues[j];
            }
        }
    }

    /**
     * Creates a copy of the {@code source} array.
     *
     * @param source Array to be copied.
     * @return the copied array.
     */
    public static int[] copyOf(int[] source) {
        return copyOf(source, source.length);
    }

    /**
     * Creates a copy of the {@code source} array.
     *
     * @param source Array to be copied.
     * @return the copied array.
     */
    public static double[] copyOf(double[] source) {
        return copyOf(source, source.length);
    }

    /**
     * Creates a copy of the {@code source} array.
     *
     * @param source Array to be copied.
     * @param len Number of entries to copy. If smaller then the source
     * length, the copy will be truncated, if larger it will padded with
     * zeroes.
     * @return the copied array.
     */
    public static int[] copyOf(int[] source, int len) {
        final int[] output = new int[len];
        System.arraycopy(source, 0, output, 0, FastMath.min(len, source.length));
        return output;
    }

    /**
     * Creates a copy of the {@code source} array.
     *
     * @param source Array to be copied.
     * @param len Number of entries to copy. If smaller then the source
     * length, the copy will be truncated, if larger it will padded with
     * zeroes.
     * @return the copied array.
     */
    public static double[] copyOf(double[] source, int len) {
        final double[] output = new double[len];
        System.arraycopy(source, 0, output, 0, FastMath.min(len, source.length));
        return output;
    }

    /**
     * Compute a linear combination accurately.
     * This method computes the sum of the products
     * <code>a<sub>i</sub> b<sub>i</sub></code> to high accuracy.
     * It does so by using specific multiplication and addition algorithms to
     * preserve accuracy and reduce cancellation effects.
     * <br/>
     * It is based on the 2005 paper
     * <a href="http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.2.1547">
     * Accurate Sum and Dot Product</a> by Takeshi Ogita, Siegfried M. Rump,
     * and Shin'ichi Oishi published in SIAM J. Sci. Comput.
     *
     * @param a Factors.
     * @param b Factors.
     * @return <code>&Sigma;<sub>i</sub> a<sub>i</sub> b<sub>i</sub></code>.
     * @throws DimensionMismatchException if arrays dimensions don't match
     */
    public static double linearCombination(final double[] a, final double[] b) throws DimensionMismatchException {
        final int len = a.length;
        if (len != b.length) {
            throw new DimensionMismatchException(len, b.length);
        }

        final double[] prodHigh = new double[len];
        double prodLowSum = 0;

        for (int i = 0; i < len; i++) {
            final double ai = a[i];
            final double ca = SPLIT_FACTOR * ai;
            final double aHigh = ca - (ca - ai);
            final double aLow = ai - aHigh;

            final double bi = b[i];
            final double cb = SPLIT_FACTOR * bi;
            final double bHigh = cb - (cb - bi);
            final double bLow = bi - bHigh;
            prodHigh[i] = ai * bi;
            final double prodLow = aLow * bLow - (((prodHigh[i] - aHigh * bHigh) - aLow * bHigh) - aHigh * bLow);
            prodLowSum += prodLow;
        }

        final double prodHighCur = prodHigh[0];
        double prodHighNext = prodHigh[1];
        double sHighPrev = prodHighCur + prodHighNext;
        double sPrime = sHighPrev - prodHighNext;
        double sLowSum = (prodHighNext - (sHighPrev - sPrime)) + (prodHighCur - sPrime);

        final int lenMinusOne = len - 1;
        for (int i = 1; i < lenMinusOne; i++) {
            prodHighNext = prodHigh[i + 1];
            final double sHighCur = sHighPrev + prodHighNext;
            sPrime = sHighCur - prodHighNext;
            sLowSum += (prodHighNext - (sHighCur - sPrime)) + (sHighPrev - sPrime);
            sHighPrev = sHighCur;
        }

        double result = sHighPrev + (prodLowSum + sLowSum);

        if (Double.isNaN(result)) {
            // either we have split infinite numbers or some coefficients were NaNs,
            // just rely on the naive implementation and let IEEE754 handle this
            result = 0;
            for (int i = 0; i < len; ++i) {
                result += a[i] * b[i];
            }
        }

        return result;
    }

    /**
     * Compute a linear combination accurately.
     * <p>
     * This method computes a<sub>1</sub>&times;b<sub>1</sub> +
     * a<sub>2</sub>&times;b<sub>2</sub> to high accuracy. It does
     * so by using specific multiplication and addition algorithms to
     * preserve accuracy and reduce cancellation effects. It is based
     * on the 2005 paper <a
     * href="http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.2.1547">
     * Accurate Sum and Dot Product</a> by Takeshi Ogita,
     * Siegfried M. Rump, and Shin'ichi Oishi published in SIAM J. Sci. Comput.
     * </p>
     * @param a1 first factor of the first term
     * @param b1 second factor of the first term
     * @param a2 first factor of the second term
     * @param b2 second factor of the second term
     * @return a<sub>1</sub>&times;b<sub>1</sub> +
     * a<sub>2</sub>&times;b<sub>2</sub>
     * @see #linearCombination(double, double, double, double, double, double)
     * @see #linearCombination(double, double, double, double, double, double, double, double)
     */
    public static double linearCombination(final double a1, final double b1, final double a2, final double b2) {

        // the code below is split in many additions/subtractions that may
        // appear redundant. However, they should NOT be simplified, as they
        // use IEEE754 floating point arithmetic rounding properties.
        // as an example, the expression "ca1 - (ca1 - a1)" is NOT the same as "a1"
        // The variable naming conventions are that xyzHigh contains the most significant
        // bits of xyz and xyzLow contains its least significant bits. So theoretically
        // xyz is the sum xyzHigh + xyzLow, but in many cases below, this sum cannot
        // be represented in only one double precision number so we preserve two numbers
        // to hold it as long as we can, combining the high and low order bits together
        // only at the end, after cancellation may have occurred on high order bits

        // split a1 and b1 as two 26 bits numbers
        final double ca1 = SPLIT_FACTOR * a1;
        final double a1High = ca1 - (ca1 - a1);
        final double a1Low = a1 - a1High;
        final double cb1 = SPLIT_FACTOR * b1;
        final double b1High = cb1 - (cb1 - b1);
        final double b1Low = b1 - b1High;

        // accurate multiplication a1 * b1
        final double prod1High = a1 * b1;
        final double prod1Low = a1Low * b1Low - (((prod1High - a1High * b1High) - a1Low * b1High) - a1High * b1Low);

        // split a2 and b2 as two 26 bits numbers
        final double ca2 = SPLIT_FACTOR * a2;
        final double a2High = ca2 - (ca2 - a2);
        final double a2Low = a2 - a2High;
        final double cb2 = SPLIT_FACTOR * b2;
        final double b2High = cb2 - (cb2 - b2);
        final double b2Low = b2 - b2High;

        // accurate multiplication a2 * b2
        final double prod2High = a2 * b2;
        final double prod2Low = a2Low * b2Low - (((prod2High - a2High * b2High) - a2Low * b2High) - a2High * b2Low);

        // accurate addition a1 * b1 + a2 * b2
        final double s12High = prod1High + prod2High;
        final double s12Prime = s12High - prod2High;
        final double s12Low = (prod2High - (s12High - s12Prime)) + (prod1High - s12Prime);

        // final rounding, s12 may have suffered many cancellations, we try
        // to recover some bits from the extra words we have saved up to now
        double result = s12High + (prod1Low + prod2Low + s12Low);

        if (Double.isNaN(result)) {
            // either we have split infinite numbers or some coefficients were NaNs,
            // just rely on the naive implementation and let IEEE754 handle this
            result = a1 * b1 + a2 * b2;
        }

        return result;
    }

    /**
     * Compute a linear combination accurately.
     * <p>
     * This method computes a<sub>1</sub>&times;b<sub>1</sub> +
     * a<sub>2</sub>&times;b<sub>2</sub> + a<sub>3</sub>&times;b<sub>3</sub>
     * to high accuracy. It does so by using specific multiplication and
     * addition algorithms to preserve accuracy and reduce cancellation effects.
     * It is based on the 2005 paper <a
     * href="http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.2.1547">
     * Accurate Sum and Dot Product</a> by Takeshi Ogita,
     * Siegfried M. Rump, and Shin'ichi Oishi published in SIAM J. Sci. Comput.
     * </p>
     * @param a1 first factor of the first term
     * @param b1 second factor of the first term
     * @param a2 first factor of the second term
     * @param b2 second factor of the second term
     * @param a3 first factor of the third term
     * @param b3 second factor of the third term
     * @return a<sub>1</sub>&times;b<sub>1</sub> +
     * a<sub>2</sub>&times;b<sub>2</sub> + a<sub>3</sub>&times;b<sub>3</sub>
     * @see #linearCombination(double, double, double, double)
     * @see #linearCombination(double, double, double, double, double, double, double, double)
     */
    public static double linearCombination(final double a1, final double b1, final double a2, final double b2,
            final double a3, final double b3) {

        // the code below is split in many additions/subtractions that may
        // appear redundant. However, they should NOT be simplified, as they
        // do use IEEE754 floating point arithmetic rounding properties.
        // as an example, the expression "ca1 - (ca1 - a1)" is NOT the same as "a1"
        // The variables naming conventions are that xyzHigh contains the most significant
        // bits of xyz and xyzLow contains its least significant bits. So theoretically
        // xyz is the sum xyzHigh + xyzLow, but in many cases below, this sum cannot
        // be represented in only one double precision number so we preserve two numbers
        // to hold it as long as we can, combining the high and low order bits together
        // only at the end, after cancellation may have occurred on high order bits

        // split a1 and b1 as two 26 bits numbers
        final double ca1 = SPLIT_FACTOR * a1;
        final double a1High = ca1 - (ca1 - a1);
        final double a1Low = a1 - a1High;
        final double cb1 = SPLIT_FACTOR * b1;
        final double b1High = cb1 - (cb1 - b1);
        final double b1Low = b1 - b1High;

        // accurate multiplication a1 * b1
        final double prod1High = a1 * b1;
        final double prod1Low = a1Low * b1Low - (((prod1High - a1High * b1High) - a1Low * b1High) - a1High * b1Low);

        // split a2 and b2 as two 26 bits numbers
        final double ca2 = SPLIT_FACTOR * a2;
        final double a2High = ca2 - (ca2 - a2);
        final double a2Low = a2 - a2High;
        final double cb2 = SPLIT_FACTOR * b2;
        final double b2High = cb2 - (cb2 - b2);
        final double b2Low = b2 - b2High;

        // accurate multiplication a2 * b2
        final double prod2High = a2 * b2;
        final double prod2Low = a2Low * b2Low - (((prod2High - a2High * b2High) - a2Low * b2High) - a2High * b2Low);

        // split a3 and b3 as two 26 bits numbers
        final double ca3 = SPLIT_FACTOR * a3;
        final double a3High = ca3 - (ca3 - a3);
        final double a3Low = a3 - a3High;
        final double cb3 = SPLIT_FACTOR * b3;
        final double b3High = cb3 - (cb3 - b3);
        final double b3Low = b3 - b3High;

        // accurate multiplication a3 * b3
        final double prod3High = a3 * b3;
        final double prod3Low = a3Low * b3Low - (((prod3High - a3High * b3High) - a3Low * b3High) - a3High * b3Low);

        // accurate addition a1 * b1 + a2 * b2
        final double s12High = prod1High + prod2High;
        final double s12Prime = s12High - prod2High;
        final double s12Low = (prod2High - (s12High - s12Prime)) + (prod1High - s12Prime);

        // accurate addition a1 * b1 + a2 * b2 + a3 * b3
        final double s123High = s12High + prod3High;
        final double s123Prime = s123High - prod3High;
        final double s123Low = (prod3High - (s123High - s123Prime)) + (s12High - s123Prime);

        // final rounding, s123 may have suffered many cancellations, we try
        // to recover some bits from the extra words we have saved up to now
        double result = s123High + (prod1Low + prod2Low + prod3Low + s12Low + s123Low);

        if (Double.isNaN(result)) {
            // either we have split infinite numbers or some coefficients were NaNs,
            // just rely on the naive implementation and let IEEE754 handle this
            result = a1 * b1 + a2 * b2 + a3 * b3;
        }

        return result;
    }

    /**
     * Compute a linear combination accurately.
     * <p>
     * This method computes a<sub>1</sub>&times;b<sub>1</sub> +
     * a<sub>2</sub>&times;b<sub>2</sub> + a<sub>3</sub>&times;b<sub>3</sub> +
     * a<sub>4</sub>&times;b<sub>4</sub>
     * to high accuracy. It does so by using specific multiplication and
     * addition algorithms to preserve accuracy and reduce cancellation effects.
     * It is based on the 2005 paper <a
     * href="http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.2.1547">
     * Accurate Sum and Dot Product</a> by Takeshi Ogita,
     * Siegfried M. Rump, and Shin'ichi Oishi published in SIAM J. Sci. Comput.
     * </p>
     * @param a1 first factor of the first term
     * @param b1 second factor of the first term
     * @param a2 first factor of the second term
     * @param b2 second factor of the second term
     * @param a3 first factor of the third term
     * @param b3 second factor of the third term
     * @param a4 first factor of the third term
     * @param b4 second factor of the third term
     * @return a<sub>1</sub>&times;b<sub>1</sub> +
     * a<sub>2</sub>&times;b<sub>2</sub> + a<sub>3</sub>&times;b<sub>3</sub> +
     * a<sub>4</sub>&times;b<sub>4</sub>
     * @see #linearCombination(double, double, double, double)
     * @see #linearCombination(double, double, double, double, double, double)
     */
    public static double linearCombination(final double a1, final double b1, final double a2, final double b2,
            final double a3, final double b3, final double a4, final double b4) {

        // the code below is split in many additions/subtractions that may
        // appear redundant. However, they should NOT be simplified, as they
        // do use IEEE754 floating point arithmetic rounding properties.
        // as an example, the expression "ca1 - (ca1 - a1)" is NOT the same as "a1"
        // The variables naming conventions are that xyzHigh contains the most significant
        // bits of xyz and xyzLow contains its least significant bits. So theoretically
        // xyz is the sum xyzHigh + xyzLow, but in many cases below, this sum cannot
        // be represented in only one double precision number so we preserve two numbers
        // to hold it as long as we can, combining the high and low order bits together
        // only at the end, after cancellation may have occurred on high order bits

        // split a1 and b1 as two 26 bits numbers
        final double ca1 = SPLIT_FACTOR * a1;
        final double a1High = ca1 - (ca1 - a1);
        final double a1Low = a1 - a1High;
        final double cb1 = SPLIT_FACTOR * b1;
        final double b1High = cb1 - (cb1 - b1);
        final double b1Low = b1 - b1High;

        // accurate multiplication a1 * b1
        final double prod1High = a1 * b1;
        final double prod1Low = a1Low * b1Low - (((prod1High - a1High * b1High) - a1Low * b1High) - a1High * b1Low);

        // split a2 and b2 as two 26 bits numbers
        final double ca2 = SPLIT_FACTOR * a2;
        final double a2High = ca2 - (ca2 - a2);
        final double a2Low = a2 - a2High;
        final double cb2 = SPLIT_FACTOR * b2;
        final double b2High = cb2 - (cb2 - b2);
        final double b2Low = b2 - b2High;

        // accurate multiplication a2 * b2
        final double prod2High = a2 * b2;
        final double prod2Low = a2Low * b2Low - (((prod2High - a2High * b2High) - a2Low * b2High) - a2High * b2Low);

        // split a3 and b3 as two 26 bits numbers
        final double ca3 = SPLIT_FACTOR * a3;
        final double a3High = ca3 - (ca3 - a3);
        final double a3Low = a3 - a3High;
        final double cb3 = SPLIT_FACTOR * b3;
        final double b3High = cb3 - (cb3 - b3);
        final double b3Low = b3 - b3High;

        // accurate multiplication a3 * b3
        final double prod3High = a3 * b3;
        final double prod3Low = a3Low * b3Low - (((prod3High - a3High * b3High) - a3Low * b3High) - a3High * b3Low);

        // split a4 and b4 as two 26 bits numbers
        final double ca4 = SPLIT_FACTOR * a4;
        final double a4High = ca4 - (ca4 - a4);
        final double a4Low = a4 - a4High;
        final double cb4 = SPLIT_FACTOR * b4;
        final double b4High = cb4 - (cb4 - b4);
        final double b4Low = b4 - b4High;

        // accurate multiplication a4 * b4
        final double prod4High = a4 * b4;
        final double prod4Low = a4Low * b4Low - (((prod4High - a4High * b4High) - a4Low * b4High) - a4High * b4Low);

        // accurate addition a1 * b1 + a2 * b2
        final double s12High = prod1High + prod2High;
        final double s12Prime = s12High - prod2High;
        final double s12Low = (prod2High - (s12High - s12Prime)) + (prod1High - s12Prime);

        // accurate addition a1 * b1 + a2 * b2 + a3 * b3
        final double s123High = s12High + prod3High;
        final double s123Prime = s123High - prod3High;
        final double s123Low = (prod3High - (s123High - s123Prime)) + (s12High - s123Prime);

        // accurate addition a1 * b1 + a2 * b2 + a3 * b3 + a4 * b4
        final double s1234High = s123High + prod4High;
        final double s1234Prime = s1234High - prod4High;
        final double s1234Low = (prod4High - (s1234High - s1234Prime)) + (s123High - s1234Prime);

        // final rounding, s1234 may have suffered many cancellations, we try
        // to recover some bits from the extra words we have saved up to now
        double result = s1234High + (prod1Low + prod2Low + prod3Low + prod4Low + s12Low + s123Low + s1234Low);

        if (Double.isNaN(result)) {
            // either we have split infinite numbers or some coefficients were NaNs,
            // just rely on the naive implementation and let IEEE754 handle this
            result = a1 * b1 + a2 * b2 + a3 * b3 + a4 * b4;
        }

        return result;
    }

    /**
     * Returns true iff both arguments are null or have same dimensions and all
     * their elements are equal as defined by
     * {@link Precision#equals(float,float)}.
     *
     * @param x first array
     * @param y second array
     * @return true if the values are both null or have same dimension
     * and equal elements.
     */
    public static boolean equals(float[] x, float[] y) {
        if ((x == null) || (y == null)) {
            return !((x == null) ^ (y == null));
        }
        if (x.length != y.length) {
            return false;
        }
        for (int i = 0; i < x.length; ++i) {
            if (!Precision.equals(x[i], y[i])) {
                return false;
            }
        }
        return true;
    }

    /**
     * Returns true iff both arguments are null or have same dimensions and all
     * their elements are equal as defined by
     * {@link Precision#equalsIncludingNaN(double,double) this method}.
     *
     * @param x first array
     * @param y second array
     * @return true if the values are both null or have same dimension and
     * equal elements
     * @since 2.2
     */
    public static boolean equalsIncludingNaN(float[] x, float[] y) {
        if ((x == null) || (y == null)) {
            return !((x == null) ^ (y == null));
        }
        if (x.length != y.length) {
            return false;
        }
        for (int i = 0; i < x.length; ++i) {
            if (!Precision.equalsIncludingNaN(x[i], y[i])) {
                return false;
            }
        }
        return true;
    }

    /**
     * Returns {@code true} iff both arguments are {@code null} or have same
     * dimensions and all their elements are equal as defined by
     * {@link Precision#equals(double,double)}.
     *
     * @param x First array.
     * @param y Second array.
     * @return {@code true} if the values are both {@code null} or have same
     * dimension and equal elements.
     */
    public static boolean equals(double[] x, double[] y) {
        if ((x == null) || (y == null)) {
            return !((x == null) ^ (y == null));
        }
        if (x.length != y.length) {
            return false;
        }
        for (int i = 0; i < x.length; ++i) {
            if (!Precision.equals(x[i], y[i])) {
                return false;
            }
        }
        return true;
    }

    /**
     * Returns {@code true} iff both arguments are {@code null} or have same
     * dimensions and all their elements are equal as defined by
     * {@link Precision#equalsIncludingNaN(double,double) this method}.
     *
     * @param x First array.
     * @param y Second array.
     * @return {@code true} if the values are both {@code null} or have same
     * dimension and equal elements.
     * @since 2.2
     */
    public static boolean equalsIncludingNaN(double[] x, double[] y) {
        if ((x == null) || (y == null)) {
            return !((x == null) ^ (y == null));
        }
        if (x.length != y.length) {
            return false;
        }
        for (int i = 0; i < x.length; ++i) {
            if (!Precision.equalsIncludingNaN(x[i], y[i])) {
                return false;
            }
        }
        return true;
    }

    /**
     * Normalizes an array to make it sum to a specified value.
     * Returns the result of the transformation <pre>
     *    x |-> x * normalizedSum / sum
     * </pre>
     * applied to each non-NaN element x of the input array, where sum is the
     * sum of the non-NaN entries in the input array.</p>
     *
     * <p>Throws IllegalArgumentException if {@code normalizedSum} is infinite
     * or NaN and ArithmeticException if the input array contains any infinite elements
     * or sums to 0.</p>
     *
     * <p>Ignores (i.e., copies unchanged to the output array) NaNs in the input array.</p>
     *
     * @param values Input array to be normalized
     * @param normalizedSum Target sum for the normalized array
     * @return the normalized array.
     * @throws MathArithmeticException if the input array contains infinite
     * elements or sums to zero.
     * @throws MathIllegalArgumentException if the target sum is infinite or {@code NaN}.
     * @since 2.1
     */
    public static double[] normalizeArray(double[] values, double normalizedSum)
            throws MathIllegalArgumentException, MathArithmeticException {
        if (Double.isInfinite(normalizedSum)) {
            throw new MathIllegalArgumentException(LocalizedFormats.NORMALIZE_INFINITE);
        }
        if (Double.isNaN(normalizedSum)) {
            throw new MathIllegalArgumentException(LocalizedFormats.NORMALIZE_NAN);
        }
        double sum = 0d;
        final int len = values.length;
        double[] out = new double[len];
        for (int i = 0; i < len; i++) {
            if (Double.isInfinite(values[i])) {
                throw new MathIllegalArgumentException(LocalizedFormats.INFINITE_ARRAY_ELEMENT, values[i], i);
            }
            if (!Double.isNaN(values[i])) {
                sum += values[i];
            }
        }
        if (sum == 0) {
            throw new MathArithmeticException(LocalizedFormats.ARRAY_SUMS_TO_ZERO);
        }
        for (int i = 0; i < len; i++) {
            if (Double.isNaN(values[i])) {
                out[i] = Double.NaN;
            } else {
                out[i] = values[i] * normalizedSum / sum;
            }
        }
        return out;
    }
}