Java tutorial
/* * Copyright 2006-2015 The MZmine 2 Development Team * * This file is part of MZmine 2. * * MZmine 2 is free software; you can redistribute it and/or modify it under the * terms of the GNU General Public License as published by the Free Software * Foundation; either version 2 of the License, or (at your option) any later * version. * * MZmine 2 is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR * A PARTICULAR PURPOSE. See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along with * MZmine 2; if not, write to the Free Software Foundation, Inc., 51 Franklin St, * Fifth Floor, Boston, MA 02110-1301 USA */ package net.sf.mzmine.modules.peaklistmethods.dataanalysis.clustering.simplekmeans; import java.util.ArrayList; import java.util.Enumeration; import java.util.List; import java.util.logging.Level; import java.util.logging.Logger; import javax.annotation.Nonnull; import net.sf.mzmine.modules.peaklistmethods.dataanalysis.clustering.ClusteringAlgorithm; import net.sf.mzmine.modules.peaklistmethods.dataanalysis.clustering.ClusteringResult; import net.sf.mzmine.modules.peaklistmethods.dataanalysis.clustering.em.EMClustererParameters; import net.sf.mzmine.parameters.ParameterSet; import weka.clusterers.SimpleKMeans; import weka.core.Instance; import weka.core.Instances; public class SimpleKMeansClusterer implements ClusteringAlgorithm { private Logger logger = Logger.getLogger(this.getClass().getName()); private static final String MODULE_NAME = "Simple KMeans"; @Override public @Nonnull String getName() { return MODULE_NAME; } @Override public ClusteringResult performClustering(Instances dataset, ParameterSet parameters) { List<Integer> clusters = new ArrayList<Integer>(); String[] options = new String[2]; SimpleKMeans clusterer = new SimpleKMeans(); int numberOfGroups = parameters.getParameter(SimpleKMeansClustererParameters.numberOfGroups).getValue(); options[0] = "-N"; options[1] = String.valueOf(numberOfGroups); try { clusterer.setOptions(options); clusterer.buildClusterer(dataset); Enumeration<?> e = dataset.enumerateInstances(); while (e.hasMoreElements()) { clusters.add(clusterer.clusterInstance((Instance) e.nextElement())); } ClusteringResult result = new ClusteringResult(clusters, null, clusterer.numberOfClusters(), parameters.getParameter(EMClustererParameters.visualization).getValue()); return result; } catch (Exception ex) { logger.log(Level.SEVERE, null, ex); return null; } } @Override public @Nonnull Class<? extends ParameterSet> getParameterSetClass() { return SimpleKMeansClustererParameters.class; } }