Java tutorial
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * SimpleKMeans.java * Copyright (C) 2000-2012 University of Waikato, Hamilton, New Zealand * */ package weka.clusterers; import java.util.ArrayList; import java.util.Collections; import java.util.Enumeration; import java.util.HashMap; import java.util.List; import java.util.Random; import java.util.Vector; import java.util.concurrent.Callable; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.util.concurrent.Future; import weka.classifiers.rules.DecisionTableHashKey; import weka.core.Attribute; import weka.core.Capabilities; import weka.core.Capabilities.Capability; import weka.core.DenseInstance; import weka.core.DistanceFunction; import weka.core.EuclideanDistance; import weka.core.Instance; import weka.core.Instances; import weka.core.ManhattanDistance; import weka.core.Option; import weka.core.RevisionUtils; import weka.core.SelectedTag; import weka.core.Tag; import weka.core.TechnicalInformation; import weka.core.TechnicalInformation.Field; import weka.core.TechnicalInformation.Type; import weka.core.TechnicalInformationHandler; import weka.core.Utils; import weka.core.WeightedInstancesHandler; import weka.filters.Filter; import weka.filters.unsupervised.attribute.ReplaceMissingValues; /** * <!-- globalinfo-start --> Cluster data using the k means algorithm. Can use * either the Euclidean distance (default) or the Manhattan distance. If the * Manhattan distance is used, then centroids are computed as the component-wise * median rather than mean. For more information see:<br/> * <br/> * D. Arthur, S. Vassilvitskii: k-means++: the advantages of carefull seeding. * In: Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete * algorithms, 1027-1035, 2007. * <p/> * <!-- globalinfo-end --> * * <!-- technical-bibtex-start --> BibTeX: * * <pre> * @inproceedings{Arthur2007, * author = {D. Arthur and S. Vassilvitskii}, * booktitle = {Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms}, * pages = {1027-1035}, * title = {k-means++: the advantages of carefull seeding}, * year = {2007} * } * </pre> * <p/> * <!-- technical-bibtex-end --> * * <!-- options-start --> Valid options are: * <p/> * * <pre> * -N <num> * Number of clusters. * (default 2). * </pre> * * <pre> * -init * Initialization method to use. * 0 = random, 1 = k-means++, 2 = canopy, 3 = farthest first. * (default = 0) * </pre> * * <pre> * -C * Use canopies to reduce the number of distance calculations. * </pre> * * <pre> * -max-candidates <num> * Maximum number of candidate canopies to retain in memory * at any one time when using canopy clustering. * T2 distance plus, data characteristics, * will determine how many candidate canopies are formed before * periodic and final pruning are performed, which might result * in exceess memory consumption. This setting avoids large numbers * of candidate canopies consuming memory. (default = 100) * </pre> * * <pre> * -periodic-pruning <num> * How often to prune low density canopies when using canopy clustering. * (default = every 10,000 training instances) * </pre> * * <pre> * -min-density * Minimum canopy density, when using canopy clustering, below which * a canopy will be pruned during periodic pruning. (default = 2 instances) * </pre> * * <pre> * -t2 * The T2 distance to use when using canopy clustering. Values < 0 indicate that * a heuristic based on attribute std. deviation should be used to set this. * (default = -1.0) * </pre> * * <pre> * -t1 * The T1 distance to use when using canopy clustering. A value < 0 is taken as a * positive multiplier for T2. (default = -1.5) * </pre> * * <pre> * -V * Display std. deviations for centroids. * </pre> * * <pre> * -M * Don't replace missing values with mean/mode. * </pre> * * <pre> * -A <classname and options> * Distance function to use. * (default: weka.core.EuclideanDistance) * </pre> * * <pre> * -I <num> * Maximum number of iterations. * </pre> * * <pre> * -O * Preserve order of instances. * </pre> * * <pre> * -fast * Enables faster distance calculations, using cut-off values. * Disables the calculation/output of squared errors/distances. * </pre> * * <pre> * -num-slots <num> * Number of execution slots. * (default 1 - i.e. no parallelism) * </pre> * * <pre> * -S <num> * Random number seed. * (default 10) * </pre> * * <pre> * -output-debug-info * If set, clusterer is run in debug mode and * may output additional info to the console * </pre> * * <pre> * -do-not-check-capabilities * If set, clusterer capabilities are not checked before clusterer is built * (use with caution). * </pre> * * <!-- options-end --> * * @author Mark Hall (mhall@cs.waikato.ac.nz) * @author Eibe Frank (eibe@cs.waikato.ac.nz) * @version $Revision$ * @see RandomizableClusterer */ public class SimpleKMeans extends RandomizableClusterer implements NumberOfClustersRequestable, WeightedInstancesHandler, TechnicalInformationHandler { /** for serialization. */ static final long serialVersionUID = -3235809600124455376L; /** * replace missing values in training instances. */ protected ReplaceMissingValues m_ReplaceMissingFilter; /** * number of clusters to generate. */ protected int m_NumClusters = 2; /** * Holds the initial start points, as supplied by the initialization method * used */ protected Instances m_initialStartPoints; /** * holds the cluster centroids. */ protected Instances m_ClusterCentroids; /** * Holds the standard deviations of the numeric attributes in each cluster. */ protected Instances m_ClusterStdDevs; /** * For each cluster, holds the frequency counts for the values of each nominal * attribute. */ protected double[][][] m_ClusterNominalCounts; protected double[][] m_ClusterMissingCounts; /** * Stats on the full data set for comparison purposes. In case the attribute * is numeric the value is the mean if is being used the Euclidian distance or * the median if Manhattan distance and if the attribute is nominal then it's * mode is saved. */ protected double[] m_FullMeansOrMediansOrModes; protected double[] m_FullStdDevs; protected double[][] m_FullNominalCounts; protected double[] m_FullMissingCounts; /** * Display standard deviations for numeric atts. */ protected boolean m_displayStdDevs; /** * Replace missing values globally? */ protected boolean m_dontReplaceMissing = false; /** * The number of instances in each cluster. */ protected double[] m_ClusterSizes; /** * Maximum number of iterations to be executed. */ protected int m_MaxIterations = 500; /** * Keep track of the number of iterations completed before convergence. */ protected int m_Iterations = 0; /** * Holds the squared errors for all clusters. */ protected double[] m_squaredErrors; /** the distance function used. */ protected DistanceFunction m_DistanceFunction = new EuclideanDistance(); /** * Preserve order of instances. */ protected boolean m_PreserveOrder = false; /** * Assignments obtained. */ protected int[] m_Assignments = null; /** whether to use fast calculation of distances (using a cut-off). */ protected boolean m_FastDistanceCalc = false; public static final int RANDOM = 0; public static final int KMEANS_PLUS_PLUS = 1; public static final int CANOPY = 2; public static final int FARTHEST_FIRST = 3; /** Initialization methods */ public static final Tag[] TAGS_SELECTION = { new Tag(RANDOM, "Random"), new Tag(KMEANS_PLUS_PLUS, "k-means++"), new Tag(CANOPY, "Canopy"), new Tag(FARTHEST_FIRST, "Farthest first") }; /** The initialization method to use */ protected int m_initializationMethod = RANDOM; /** * Whether to reducet the number of distance calcs done by k-means with * canopies */ protected boolean m_speedUpDistanceCompWithCanopies = false; /** Canopies that each centroid falls into (determined by T1 radius) */ protected List<long[]> m_centroidCanopyAssignments; /** Canopies that each training instance falls into (determined by T1 radius) */ protected List<long[]> m_dataPointCanopyAssignments; /** The canopy clusterer (if being used) */ protected Canopy m_canopyClusters; /** * The maximum number of candidate canopies to hold in memory at any one time * (if using canopy clustering) */ protected int m_maxCanopyCandidates = 100; /** * Prune low-density candidate canopies after every x instances have been seen * (if using canopy clustering) */ protected int m_periodicPruningRate = 10000; /** * The minimum cluster density (according to T2 distance) allowed. Used when * periodically pruning candidate canopies (if using canopy clustering) */ protected double m_minClusterDensity = 2; /** The t2 radius to pass through to Canopy */ protected double m_t2 = Canopy.DEFAULT_T2; /** The t1 radius to pass through to Canopy */ protected double m_t1 = Canopy.DEFAULT_T1; /** Number of threads to run */ protected int m_executionSlots = 1; /** For parallel execution mode */ protected transient ExecutorService m_executorPool; /** * the default constructor. */ public SimpleKMeans() { super(); m_SeedDefault = 10; setSeed(m_SeedDefault); } /** * Start the pool of execution threads */ protected void startExecutorPool() { if (m_executorPool != null) { m_executorPool.shutdownNow(); } m_executorPool = Executors.newFixedThreadPool(m_executionSlots); } protected int m_completed; protected int m_failed; @Override public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; result = new TechnicalInformation(Type.INPROCEEDINGS); result.setValue(Field.AUTHOR, "D. Arthur and S. Vassilvitskii"); result.setValue(Field.TITLE, "k-means++: the advantages of carefull seeding"); result.setValue(Field.BOOKTITLE, "Proceedings of the eighteenth annual " + "ACM-SIAM symposium on Discrete algorithms"); result.setValue(Field.YEAR, "2007"); result.setValue(Field.PAGES, "1027-1035"); return result; } /** * Returns a string describing this clusterer. * * @return a description of the evaluator suitable for displaying in the * explorer/experimenter gui */ public String globalInfo() { return "Cluster data using the k means algorithm. Can use either " + "the Euclidean distance (default) or the Manhattan distance." + " If the Manhattan distance is used, then centroids are computed " + "as the component-wise median rather than mean." + " For more information see:\n\n" + getTechnicalInformation().toString(); } /** * Returns default capabilities of the clusterer. * * @return the capabilities of this clusterer */ @Override public Capabilities getCapabilities() { Capabilities result = super.getCapabilities(); result.disableAll(); result.enable(Capability.NO_CLASS); // attributes result.enable(Capability.NOMINAL_ATTRIBUTES); result.enable(Capability.NUMERIC_ATTRIBUTES); result.enable(Capability.MISSING_VALUES); return result; } private class KMeansComputeCentroidTask implements Callable<double[]> { protected Instances m_cluster; protected int m_centroidIndex; public KMeansComputeCentroidTask(int centroidIndex, Instances cluster) { m_cluster = cluster; m_centroidIndex = centroidIndex; } @Override public double[] call() { return moveCentroid(m_centroidIndex, m_cluster, true, false); } } /** * Launch the move centroids tasks * * @param clusters the cluster centroids * @return the number of empty clusters */ protected int launchMoveCentroids(Instances[] clusters) { int emptyClusterCount = 0; List<Future<double[]>> results = new ArrayList<Future<double[]>>(); for (int i = 0; i < m_NumClusters; i++) { if (clusters[i].numInstances() == 0) { emptyClusterCount++; } else { Future<double[]> futureCentroid = m_executorPool .submit(new KMeansComputeCentroidTask(i, clusters[i])); results.add(futureCentroid); } } try { for (Future<double[]> d : results) { m_ClusterCentroids.add(new DenseInstance(1.0, d.get())); } } catch (Exception ex) { ex.printStackTrace(); } return emptyClusterCount; } private class KMeansClusterTask implements Callable<Boolean> { protected int m_start; protected int m_end; protected Instances m_inst; protected int[] m_clusterAssignments; public KMeansClusterTask(Instances inst, int start, int end, int[] clusterAssignments) { m_start = start; m_end = end; m_inst = inst; m_clusterAssignments = clusterAssignments; } @Override public Boolean call() { boolean converged = true; for (int i = m_start; i < m_end; i++) { Instance toCluster = m_inst.instance(i); long[] instanceCanopies = m_speedUpDistanceCompWithCanopies ? m_dataPointCanopyAssignments.get(i) : null; int newC = clusterInstance(toCluster, instanceCanopies); if (newC != m_clusterAssignments[i]) { converged = false; } m_clusterAssignments[i] = newC; } return converged; } protected int clusterInstance(Instance inst, long[] instanceCanopies) { double minDist = Integer.MAX_VALUE; int bestCluster = 0; for (int i = 0; i < m_NumClusters; i++) { double dist; if (m_speedUpDistanceCompWithCanopies && instanceCanopies != null && instanceCanopies.length > 0) { try { if (!Canopy.nonEmptyCanopySetIntersection(m_centroidCanopyAssignments.get(i), instanceCanopies)) { // System.err.println("Skipping distance calc... " // + Canopy.printSingleAssignment(instanceCanopies)); continue; } } catch (Exception ex) { ex.printStackTrace(); } } dist = m_DistanceFunction.distance(inst, m_ClusterCentroids.instance(i), minDist); if (dist < minDist) { minDist = dist; bestCluster = i; } } return bestCluster; } } /** * Launch the tasks that assign instances to clusters * * @param insts the instances to be clustered * @param clusterAssignments the array of cluster assignments * @return true if k means has converged * @throws Exception if a problem occurs */ protected boolean launchAssignToClusters(Instances insts, int[] clusterAssignments) throws Exception { int numPerTask = insts.numInstances() / m_executionSlots; List<Future<Boolean>> results = new ArrayList<Future<Boolean>>(); for (int i = 0; i < m_executionSlots; i++) { int start = i * numPerTask; int end = start + numPerTask; if (i == m_executionSlots - 1) { end = insts.numInstances(); } Future<Boolean> futureKM = m_executorPool .submit(new KMeansClusterTask(insts, start, end, clusterAssignments)); results.add(futureKM); } boolean converged = true; for (Future<Boolean> f : results) { if (!f.get()) { converged = false; } } return converged; } /** * Generates a clusterer. Has to initialize all fields of the clusterer that * are not being set via options. * * @param data set of instances serving as training data * @throws Exception if the clusterer has not been generated successfully */ @Override public void buildClusterer(Instances data) throws Exception { m_canopyClusters = null; // can clusterer handle the data? getCapabilities().testWithFail(data); m_Iterations = 0; m_ReplaceMissingFilter = new ReplaceMissingValues(); Instances instances = new Instances(data); instances.setClassIndex(-1); if (!m_dontReplaceMissing) { m_ReplaceMissingFilter.setInputFormat(instances); instances = Filter.useFilter(instances, m_ReplaceMissingFilter); } m_ClusterNominalCounts = new double[m_NumClusters][instances.numAttributes()][]; m_ClusterMissingCounts = new double[m_NumClusters][instances.numAttributes()]; if (m_displayStdDevs) { m_FullStdDevs = instances.variances(); } m_FullMeansOrMediansOrModes = moveCentroid(0, instances, true, false); m_FullMissingCounts = m_ClusterMissingCounts[0]; m_FullNominalCounts = m_ClusterNominalCounts[0]; double sumOfWeights = instances.sumOfWeights(); for (int i = 0; i < instances.numAttributes(); i++) { if (instances.attribute(i).isNumeric()) { if (m_displayStdDevs) { m_FullStdDevs[i] = Math.sqrt(m_FullStdDevs[i]); } if (m_FullMissingCounts[i] == sumOfWeights) { m_FullMeansOrMediansOrModes[i] = Double.NaN; // mark missing as mean } } else { if (m_FullMissingCounts[i] > m_FullNominalCounts[i][Utils.maxIndex(m_FullNominalCounts[i])]) { m_FullMeansOrMediansOrModes[i] = -1; // mark missing as most common // value } } } m_ClusterCentroids = new Instances(instances, m_NumClusters); int[] clusterAssignments = new int[instances.numInstances()]; if (m_PreserveOrder) { m_Assignments = clusterAssignments; } m_DistanceFunction.setInstances(instances); Random RandomO = new Random(getSeed()); int instIndex; HashMap<DecisionTableHashKey, Integer> initC = new HashMap<DecisionTableHashKey, Integer>(); DecisionTableHashKey hk = null; Instances initInstances = null; if (m_PreserveOrder) { initInstances = new Instances(instances); } else { initInstances = instances; } if (m_speedUpDistanceCompWithCanopies) { m_canopyClusters = new Canopy(); m_canopyClusters.setNumClusters(m_NumClusters); m_canopyClusters.setSeed(getSeed()); m_canopyClusters.setT2(getCanopyT2()); m_canopyClusters.setT1(getCanopyT1()); m_canopyClusters.setMaxNumCandidateCanopiesToHoldInMemory(getCanopyMaxNumCanopiesToHoldInMemory()); m_canopyClusters.setPeriodicPruningRate(getCanopyPeriodicPruningRate()); m_canopyClusters.setMinimumCanopyDensity(getCanopyMinimumCanopyDensity()); m_canopyClusters.setDebug(getDebug()); m_canopyClusters.buildClusterer(initInstances); // System.err.println(m_canopyClusters); m_centroidCanopyAssignments = new ArrayList<long[]>(); m_dataPointCanopyAssignments = new ArrayList<long[]>(); } if (m_initializationMethod == KMEANS_PLUS_PLUS) { kMeansPlusPlusInit(initInstances); m_initialStartPoints = new Instances(m_ClusterCentroids); } else if (m_initializationMethod == CANOPY) { canopyInit(initInstances); m_initialStartPoints = new Instances(m_canopyClusters.getCanopies()); } else if (m_initializationMethod == FARTHEST_FIRST) { farthestFirstInit(initInstances); m_initialStartPoints = new Instances(m_ClusterCentroids); } else { // random for (int j = initInstances.numInstances() - 1; j >= 0; j--) { instIndex = RandomO.nextInt(j + 1); hk = new DecisionTableHashKey(initInstances.instance(instIndex), initInstances.numAttributes(), true); if (!initC.containsKey(hk)) { m_ClusterCentroids.add(initInstances.instance(instIndex)); initC.put(hk, null); } initInstances.swap(j, instIndex); if (m_ClusterCentroids.numInstances() == m_NumClusters) { break; } } m_initialStartPoints = new Instances(m_ClusterCentroids); } if (m_speedUpDistanceCompWithCanopies) { // assign canopies to training data for (int i = 0; i < instances.numInstances(); i++) { m_dataPointCanopyAssignments.add(m_canopyClusters.assignCanopies(instances.instance(i))); } } m_NumClusters = m_ClusterCentroids.numInstances(); // removing reference initInstances = null; int i; boolean converged = false; int emptyClusterCount; Instances[] tempI = new Instances[m_NumClusters]; m_squaredErrors = new double[m_NumClusters]; m_ClusterNominalCounts = new double[m_NumClusters][instances.numAttributes()][0]; m_ClusterMissingCounts = new double[m_NumClusters][instances.numAttributes()]; startExecutorPool(); while (!converged) { if (m_speedUpDistanceCompWithCanopies) { // re-assign canopies to the current cluster centers m_centroidCanopyAssignments.clear(); for (int kk = 0; kk < m_ClusterCentroids.numInstances(); kk++) { m_centroidCanopyAssignments .add(m_canopyClusters.assignCanopies(m_ClusterCentroids.instance(kk))); } } emptyClusterCount = 0; m_Iterations++; converged = true; if (m_executionSlots <= 1 || instances.numInstances() < 2 * m_executionSlots) { for (i = 0; i < instances.numInstances(); i++) { Instance toCluster = instances.instance(i); int newC = clusterProcessedInstance(toCluster, false, true, m_speedUpDistanceCompWithCanopies ? m_dataPointCanopyAssignments.get(i) : null); if (newC != clusterAssignments[i]) { converged = false; } clusterAssignments[i] = newC; } } else { converged = launchAssignToClusters(instances, clusterAssignments); } // update centroids m_ClusterCentroids = new Instances(instances, m_NumClusters); for (i = 0; i < m_NumClusters; i++) { tempI[i] = new Instances(instances, 0); } for (i = 0; i < instances.numInstances(); i++) { tempI[clusterAssignments[i]].add(instances.instance(i)); } if (m_executionSlots <= 1 || instances.numInstances() < 2 * m_executionSlots) { for (i = 0; i < m_NumClusters; i++) { if (tempI[i].numInstances() == 0) { // empty cluster emptyClusterCount++; } else { moveCentroid(i, tempI[i], true, true); } } } else { emptyClusterCount = launchMoveCentroids(tempI); } if (m_Iterations == m_MaxIterations) { converged = true; } if (emptyClusterCount > 0) { m_NumClusters -= emptyClusterCount; if (converged) { Instances[] t = new Instances[m_NumClusters]; int index = 0; for (int k = 0; k < tempI.length; k++) { if (tempI[k].numInstances() > 0) { t[index] = tempI[k]; for (i = 0; i < tempI[k].numAttributes(); i++) { m_ClusterNominalCounts[index][i] = m_ClusterNominalCounts[k][i]; } index++; } } tempI = t; } else { tempI = new Instances[m_NumClusters]; } } if (!converged) { m_ClusterNominalCounts = new double[m_NumClusters][instances.numAttributes()][0]; } } // calculate errors if (!m_FastDistanceCalc) { for (i = 0; i < instances.numInstances(); i++) { clusterProcessedInstance(instances.instance(i), true, false, null); } } if (m_displayStdDevs) { m_ClusterStdDevs = new Instances(instances, m_NumClusters); } m_ClusterSizes = new double[m_NumClusters]; for (i = 0; i < m_NumClusters; i++) { if (m_displayStdDevs) { double[] vals2 = tempI[i].variances(); for (int j = 0; j < instances.numAttributes(); j++) { if (instances.attribute(j).isNumeric()) { vals2[j] = Math.sqrt(vals2[j]); } else { vals2[j] = Utils.missingValue(); } } m_ClusterStdDevs.add(new DenseInstance(1.0, vals2)); } m_ClusterSizes[i] = tempI[i].sumOfWeights(); } m_executorPool.shutdown(); // save memory! m_DistanceFunction.clean(); } /** * Initialize with the canopy centers of the Canopy clustering method * * @param data the training data * @throws Exception if a problem occurs */ protected void canopyInit(Instances data) throws Exception { if (m_canopyClusters == null) { m_canopyClusters = new Canopy(); m_canopyClusters.setNumClusters(m_NumClusters); m_canopyClusters.setSeed(getSeed()); m_canopyClusters.setT2(getCanopyT2()); m_canopyClusters.setT1(getCanopyT1()); m_canopyClusters.setMaxNumCandidateCanopiesToHoldInMemory(getCanopyMaxNumCanopiesToHoldInMemory()); m_canopyClusters.setPeriodicPruningRate(getCanopyPeriodicPruningRate()); m_canopyClusters.setMinimumCanopyDensity(getCanopyMinimumCanopyDensity()); m_canopyClusters.setDebug(getDebug()); m_canopyClusters.buildClusterer(data); } m_ClusterCentroids = m_canopyClusters.getCanopies(); } /** * Initialize with the fartherst first centers * * @param data the training data * @throws Exception if a problem occurs */ protected void farthestFirstInit(Instances data) throws Exception { FarthestFirst ff = new FarthestFirst(); ff.setNumClusters(m_NumClusters); ff.buildClusterer(data); m_ClusterCentroids = ff.getClusterCentroids(); } /** * Initialize using the k-means++ method * * @param data the training data * @throws Exception if a problem occurs */ protected void kMeansPlusPlusInit(Instances data) throws Exception { Random randomO = new Random(getSeed()); HashMap<DecisionTableHashKey, String> initC = new HashMap<DecisionTableHashKey, String>(); // choose initial center uniformly at random int index = randomO.nextInt(data.numInstances()); m_ClusterCentroids.add(data.instance(index)); DecisionTableHashKey hk = new DecisionTableHashKey(data.instance(index), data.numAttributes(), true); initC.put(hk, null); int iteration = 0; int remainingInstances = data.numInstances() - 1; if (m_NumClusters > 1) { // proceed with selecting the rest // distances to the initial randomly chose center double[] distances = new double[data.numInstances()]; double[] cumProbs = new double[data.numInstances()]; for (int i = 0; i < data.numInstances(); i++) { distances[i] = m_DistanceFunction.distance(data.instance(i), m_ClusterCentroids.instance(iteration)); } // now choose the remaining cluster centers for (int i = 1; i < m_NumClusters; i++) { // distances converted to probabilities double[] weights = new double[data.numInstances()]; System.arraycopy(distances, 0, weights, 0, distances.length); Utils.normalize(weights); double sumOfProbs = 0; for (int k = 0; k < data.numInstances(); k++) { sumOfProbs += weights[k]; cumProbs[k] = sumOfProbs; } cumProbs[data.numInstances() - 1] = 1.0; // make sure there are no // rounding issues // choose a random instance double prob = randomO.nextDouble(); for (int k = 0; k < cumProbs.length; k++) { if (prob < cumProbs[k]) { Instance candidateCenter = data.instance(k); hk = new DecisionTableHashKey(candidateCenter, data.numAttributes(), true); if (!initC.containsKey(hk)) { initC.put(hk, null); m_ClusterCentroids.add(candidateCenter); } else { // we shouldn't get here because any instance that is a duplicate // of // an already chosen cluster center should have zero distance (and // hence // zero probability of getting chosen) to that center. System.err.println("We shouldn't get here...."); } remainingInstances--; break; } } iteration++; if (remainingInstances == 0) { break; } // prepare to choose the next cluster center. // check distances against the new cluster center to see if it is closer for (int k = 0; k < data.numInstances(); k++) { if (distances[k] > 0) { double newDist = m_DistanceFunction.distance(data.instance(k), m_ClusterCentroids.instance(iteration)); if (newDist < distances[k]) { distances[k] = newDist; } } } } } } /** * Move the centroid to it's new coordinates. Generate the centroid * coordinates based on it's members (objects assigned to the cluster of the * centroid) and the distance function being used. * * @param centroidIndex index of the centroid which the coordinates will be * computed * @param members the objects that are assigned to the cluster of this * centroid * @param updateClusterInfo if the method is supposed to update the m_Cluster * arrays * @param addToCentroidInstances true if the method is to add the computed * coordinates to the Instances holding the centroids * @return the centroid coordinates */ protected double[] moveCentroid(int centroidIndex, Instances members, boolean updateClusterInfo, boolean addToCentroidInstances) { double[] vals = new double[members.numAttributes()]; double[][] nominalDists = new double[members.numAttributes()][]; double[] weightMissing = new double[members.numAttributes()]; double[] weightNonMissing = new double[members.numAttributes()]; // Quickly calculate some relevant statistics for (int j = 0; j < members.numAttributes(); j++) { if (members.attribute(j).isNominal()) { nominalDists[j] = new double[members.attribute(j).numValues()]; } } for (Instance inst : members) { for (int j = 0; j < members.numAttributes(); j++) { if (inst.isMissing(j)) { weightMissing[j] += inst.weight(); } else { weightNonMissing[j] += inst.weight(); if (members.attribute(j).isNumeric()) { vals[j] += inst.weight() * inst.value(j); // Will be overwritten in Manhattan case } else { nominalDists[j][(int) inst.value(j)] += inst.weight(); } } } } for (int j = 0; j < members.numAttributes(); j++) { if (members.attribute(j).isNumeric()) { if (weightNonMissing[j] > 0) { vals[j] /= weightNonMissing[j]; } else { vals[j] = Utils.missingValue(); } } else { double max = -Double.MAX_VALUE; double maxIndex = -1; for (int i = 0; i < nominalDists[j].length; i++) { if (nominalDists[j][i] > max) { max = nominalDists[j][i]; maxIndex = i; } if (max < weightMissing[j]) { vals[j] = Utils.missingValue(); } else { vals[j] = maxIndex; } } } } if (m_DistanceFunction instanceof ManhattanDistance) { // Need to replace means by medians Instances sortedMembers = null; int middle = (members.numInstances() - 1) / 2; boolean dataIsEven = ((members.numInstances() % 2) == 0); if (m_PreserveOrder) { sortedMembers = members; } else { sortedMembers = new Instances(members); } for (int j = 0; j < members.numAttributes(); j++) { if ((weightNonMissing[j] > 0) && members.attribute(j).isNumeric()) { // singleton special case if (members.numInstances() == 1) { vals[j] = members.instance(0).value(j); } else { vals[j] = sortedMembers.kthSmallestValue(j, middle + 1); if (dataIsEven) { vals[j] = (vals[j] + sortedMembers.kthSmallestValue(j, middle + 2)) / 2; } } } } } if (updateClusterInfo) { for (int j = 0; j < members.numAttributes(); j++) { m_ClusterMissingCounts[centroidIndex][j] = weightMissing[j]; m_ClusterNominalCounts[centroidIndex][j] = nominalDists[j]; } } if (addToCentroidInstances) { m_ClusterCentroids.add(new DenseInstance(1.0, vals)); } return vals; } /** * clusters an instance that has been through the filters. * * @param instance the instance to assign a cluster to * @param updateErrors if true, update the within clusters sum of errors * @param useFastDistCalc whether to use the fast distance calculation or not * @param instanceCanopies the canopies covering the instance to be clustered, * or null if not using the option to reduce the number of distance * computations via canopies * @return a cluster number */ private int clusterProcessedInstance(Instance instance, boolean updateErrors, boolean useFastDistCalc, long[] instanceCanopies) { double minDist = Integer.MAX_VALUE; int bestCluster = 0; for (int i = 0; i < m_NumClusters; i++) { double dist; if (useFastDistCalc) { if (m_speedUpDistanceCompWithCanopies && instanceCanopies != null && instanceCanopies.length > 0) { try { if (!Canopy.nonEmptyCanopySetIntersection(m_centroidCanopyAssignments.get(i), instanceCanopies)) { continue; } } catch (Exception ex) { ex.printStackTrace(); } dist = m_DistanceFunction.distance(instance, m_ClusterCentroids.instance(i), minDist); } else { dist = m_DistanceFunction.distance(instance, m_ClusterCentroids.instance(i), minDist); } } else { dist = m_DistanceFunction.distance(instance, m_ClusterCentroids.instance(i)); } if (dist < minDist) { minDist = dist; bestCluster = i; } } if (updateErrors) { if (m_DistanceFunction instanceof EuclideanDistance) { // Euclidean distance to Squared Euclidean distance minDist *= minDist * instance.weight(); } m_squaredErrors[bestCluster] += minDist; } return bestCluster; } /** * Classifies a given instance. * * @param instance the instance to be assigned to a cluster * @return the number of the assigned cluster as an interger if the class is * enumerated, otherwise the predicted value * @throws Exception if instance could not be classified successfully */ @Override public int clusterInstance(Instance instance) throws Exception { Instance inst = null; if (!m_dontReplaceMissing) { m_ReplaceMissingFilter.input(instance); m_ReplaceMissingFilter.batchFinished(); inst = m_ReplaceMissingFilter.output(); } else { inst = instance; } return clusterProcessedInstance(inst, false, true, null); } /** * Returns the number of clusters. * * @return the number of clusters generated for a training dataset. * @throws Exception if number of clusters could not be returned successfully */ @Override public int numberOfClusters() throws Exception { return m_NumClusters; } /** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ @Override public Enumeration<Option> listOptions() { Vector<Option> result = new Vector<Option>(); result.addElement(new Option("\tNumber of clusters.\n" + "\t(default 2).", "N", 1, "-N <num>")); result.addElement(new Option("\tInitialization method to use.\n\t0 = random, 1 = k-means++, " + "2 = canopy, 3 = farthest first.\n\t(default = 0)", "init", 1, "-init")); result.addElement( new Option("\tUse canopies to reduce the number of distance calculations.", "C", 0, "-C")); result.addElement(new Option( "\tMaximum number of candidate canopies to retain in memory\n\t" + "at any one time when using canopy clustering.\n\t" + "T2 distance plus, data characteristics,\n\t" + "will determine how many candidate canopies are formed before\n\t" + "periodic and final pruning are performed, which might result\n\t" + "in exceess memory consumption. This setting avoids large numbers\n\t" + "of candidate canopies consuming memory. (default = 100)", "-max-candidates", 1, "-max-candidates <num>")); result.addElement(new Option( "\tHow often to prune low density canopies when using canopy clustering. \n\t" + "(default = every 10,000 training instances)", "periodic-pruning", 1, "-periodic-pruning <num>")); result.addElement(new Option( "\tMinimum canopy density, when using canopy clustering, below which\n\t" + " a canopy will be pruned during periodic pruning. (default = 2 instances)", "min-density", 1, "-min-density")); result.addElement( new Option("\tThe T2 distance to use when using canopy clustering. Values < 0 indicate that\n\t" + "a heuristic based on attribute std. deviation should be used to set this.\n\t" + "(default = -1.0)", "t2", 1, "-t2")); result.addElement( new Option("\tThe T1 distance to use when using canopy clustering. A value < 0 is taken as a\n\t" + "positive multiplier for T2. (default = -1.5)", "t1", 1, "-t1")); result.addElement(new Option("\tDisplay std. deviations for centroids.\n", "V", 0, "-V")); result.addElement(new Option("\tDon't replace missing values with mean/mode.\n", "M", 0, "-M")); result.add(new Option("\tDistance function to use.\n" + "\t(default: weka.core.EuclideanDistance)", "A", 1, "-A <classname and options>")); result.add(new Option("\tMaximum number of iterations.\n", "I", 1, "-I <num>")); result.addElement(new Option("\tPreserve order of instances.\n", "O", 0, "-O")); result.addElement(new Option("\tEnables faster distance calculations, using cut-off values.\n" + "\tDisables the calculation/output of squared errors/distances.\n", "fast", 0, "-fast")); result.addElement(new Option("\tNumber of execution slots.\n" + "\t(default 1 - i.e. no parallelism)", "num-slots", 1, "-num-slots <num>")); result.addAll(Collections.list(super.listOptions())); return result.elements(); } /** * Returns the tip text for this property. * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String numClustersTipText() { return "set number of clusters"; } /** * set the number of clusters to generate. * * @param n the number of clusters to generate * @throws Exception if number of clusters is negative */ @Override public void setNumClusters(int n) throws Exception { if (n <= 0) { throw new Exception("Number of clusters must be > 0"); } m_NumClusters = n; } /** * gets the number of clusters to generate. * * @return the number of clusters to generate */ public int getNumClusters() { return m_NumClusters; } /** * Returns the tip text for this property. * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String initializationMethodTipText() { return "The initialization method to use. Random, k-means++, Canopy or farthest first"; } /** * Set the initialization method to use * * @param method the initialization method to use */ public void setInitializationMethod(SelectedTag method) { if (method.getTags() == TAGS_SELECTION) { m_initializationMethod = method.getSelectedTag().getID(); } } /** * Get the initialization method to use * * @return method the initialization method to use */ public SelectedTag getInitializationMethod() { return new SelectedTag(m_initializationMethod, TAGS_SELECTION); } /** * Returns the tip text for this property. * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String reduceNumberOfDistanceCalcsViaCanopiesTipText() { return "Use canopy clustering to reduce the number of distance calculations " + "performed by k-means"; } /** * Set whether to use canopies to reduce the number of distance computations * required * * @param c true if canopies are to be used to reduce the number of distance * computations */ public void setReduceNumberOfDistanceCalcsViaCanopies(boolean c) { m_speedUpDistanceCompWithCanopies = c; } /** * Get whether to use canopies to reduce the number of distance computations * required * * @return true if canopies are to be used to reduce the number of distance * computations */ public boolean getReduceNumberOfDistanceCalcsViaCanopies() { return m_speedUpDistanceCompWithCanopies; } /** * Returns the tip text for this property. * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String canopyPeriodicPruningRateTipText() { return "If using canopy clustering for initialization and/or speedup " + "this is how often to prune low density canopies during training"; } /** * Set the how often to prune low density canopies during training (if using * canopy clustering) * * @param p how often (every p instances) to prune low density canopies */ public void setCanopyPeriodicPruningRate(int p) { m_periodicPruningRate = p; } /** * Get the how often to prune low density canopies during training (if using * canopy clustering) * * @return how often (every p instances) to prune low density canopies */ public int getCanopyPeriodicPruningRate() { return m_periodicPruningRate; } /** * Returns the tip text for this property. * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String canopyMinimumCanopyDensityTipText() { return "If using canopy clustering for initialization and/or speedup " + "this is the minimum T2-based density " + "below which a canopy will be pruned during periodic pruning"; } /** * Set the minimum T2-based density below which a canopy will be pruned during * periodic pruning. * * @param dens the minimum canopy density */ public void setCanopyMinimumCanopyDensity(double dens) { m_minClusterDensity = dens; } /** * Get the minimum T2-based density below which a canopy will be pruned during * periodic pruning. * * @return the minimum canopy density */ public double getCanopyMinimumCanopyDensity() { return m_minClusterDensity; } /** * Returns the tip text for this property. * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String canopyMaxNumCanopiesToHoldInMemoryTipText() { return "If using canopy clustering for initialization and/or speedup " + "this is the maximum number of candidate canopies to " + "retain in main memory during training of the canopy clusterer. " + "T2 distance and data characteristics determine how many candidate " + "canopies are formed before periodic and final pruning are performed. There " + "may not be enough memory available if T2 is set too low."; } /** * Set the maximum number of candidate canopies to retain in memory during * training. T2 distance and data characteristics determine how many candidate * canopies are formed before periodic and final pruning are performed. There * may not be enough memory available if T2 is set too low. * * @param max the maximum number of candidate canopies to retain in memory * during training */ public void setCanopyMaxNumCanopiesToHoldInMemory(int max) { m_maxCanopyCandidates = max; } /** * Get the maximum number of candidate canopies to retain in memory during * training. T2 distance and data characteristics determine how many candidate * canopies are formed before periodic and final pruning are performed. There * may not be enough memory available if T2 is set too low. * * @return the maximum number of candidate canopies to retain in memory during * training */ public int getCanopyMaxNumCanopiesToHoldInMemory() { return m_maxCanopyCandidates; } /** * Tip text for this property * * @return the tip text for this property */ public String canopyT2TipText() { return "The T2 distance to use when using canopy clustering. Values < 0 indicate that this should be set using " + "a heuristic based on attribute standard deviation"; } /** * Set the t2 radius to use when canopy clustering is being used as start * points and/or to reduce the number of distance calcs * * @param t2 the t2 radius to use */ public void setCanopyT2(double t2) { m_t2 = t2; } /** * Get the t2 radius to use when canopy clustering is being used as start * points and/or to reduce the number of distance calcs * * @return the t2 radius to use */ public double getCanopyT2() { return m_t2; } /** * Tip text for this property * * @return the tip text for this property */ public String canopyT1TipText() { return "The T1 distance to use when using canopy clustering. Values < 0 are taken as a positive " + "multiplier for the T2 distance"; } /** * Set the t1 radius to use when canopy clustering is being used as start * points and/or to reduce the number of distance calcs * * @param t1 the t1 radius to use */ public void setCanopyT1(double t1) { m_t1 = t1; } /** * Get the t1 radius to use when canopy clustering is being used as start * points and/or to reduce the number of distance calcs * * @return the t1 radius to use */ public double getCanopyT1() { return m_t1; } /** * Returns the tip text for this property. * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String maxIterationsTipText() { return "set maximum number of iterations"; } /** * set the maximum number of iterations to be executed. * * @param n the maximum number of iterations * @throws Exception if maximum number of iteration is smaller than 1 */ public void setMaxIterations(int n) throws Exception { if (n <= 0) { throw new Exception("Maximum number of iterations must be > 0"); } m_MaxIterations = n; } /** * gets the number of maximum iterations to be executed. * * @return the number of clusters to generate */ public int getMaxIterations() { return m_MaxIterations; } /** * Returns the tip text for this property. * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String displayStdDevsTipText() { return "Display std deviations of numeric attributes " + "and counts of nominal attributes."; } /** * Sets whether standard deviations and nominal count. Should be displayed in * the clustering output. * * @param stdD true if std. devs and counts should be displayed */ public void setDisplayStdDevs(boolean stdD) { m_displayStdDevs = stdD; } /** * Gets whether standard deviations and nominal count. Should be displayed in * the clustering output. * * @return true if std. devs and counts should be displayed */ public boolean getDisplayStdDevs() { return m_displayStdDevs; } /** * Returns the tip text for this property. * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String dontReplaceMissingValuesTipText() { return "Replace missing values globally with mean/mode."; } /** * Sets whether missing values are to be replaced. * * @param r true if missing values are to be replaced */ public void setDontReplaceMissingValues(boolean r) { m_dontReplaceMissing = r; } /** * Gets whether missing values are to be replaced. * * @return true if missing values are to be replaced */ public boolean getDontReplaceMissingValues() { return m_dontReplaceMissing; } /** * Returns the tip text for this property. * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String distanceFunctionTipText() { return "The distance function to use for instances comparison " + "(default: weka.core.EuclideanDistance). "; } /** * returns the distance function currently in use. * * @return the distance function */ public DistanceFunction getDistanceFunction() { return m_DistanceFunction; } /** * sets the distance function to use for instance comparison. * * @param df the new distance function to use * @throws Exception if instances cannot be processed */ public void setDistanceFunction(DistanceFunction df) throws Exception { if (!(df instanceof EuclideanDistance) && !(df instanceof ManhattanDistance)) { throw new Exception("SimpleKMeans currently only supports the Euclidean and Manhattan distances."); } m_DistanceFunction = df; } /** * Returns the tip text for this property. * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String preserveInstancesOrderTipText() { return "Preserve order of instances."; } /** * Sets whether order of instances must be preserved. * * @param r true if missing values are to be replaced */ public void setPreserveInstancesOrder(boolean r) { m_PreserveOrder = r; } /** * Gets whether order of instances must be preserved. * * @return true if missing values are to be replaced */ public boolean getPreserveInstancesOrder() { return m_PreserveOrder; } /** * Returns the tip text for this property. * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String fastDistanceCalcTipText() { return "Uses cut-off values for speeding up distance calculation, but " + "suppresses also the calculation and output of the within cluster sum " + "of squared errors/sum of distances."; } /** * Sets whether to use faster distance calculation. * * @param value true if faster calculation to be used */ public void setFastDistanceCalc(boolean value) { m_FastDistanceCalc = value; } /** * Gets whether to use faster distance calculation. * * @return true if faster calculation is used */ public boolean getFastDistanceCalc() { return m_FastDistanceCalc; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String numExecutionSlotsTipText() { return "The number of execution slots (threads) to use. " + "Set equal to the number of available cpu/cores"; } /** * Set the degree of parallelism to use. * * @param slots the number of tasks to run in parallel when computing the * nearest neighbors and evaluating different values of k between the * lower and upper bounds */ public void setNumExecutionSlots(int slots) { m_executionSlots = slots; } /** * Get the degree of parallelism to use. * * @return the number of tasks to run in parallel when computing the nearest * neighbors and evaluating different values of k between the lower * and upper bounds */ public int getNumExecutionSlots() { return m_executionSlots; } /** * Parses a given list of options. * <p/> * * <!-- options-start --> Valid options are: * <p/> * * <pre> * -N <num> * Number of clusters. * (default 2). * </pre> * * <pre> * -init * Initialization method to use. * 0 = random, 1 = k-means++, 2 = canopy, 3 = farthest first. * (default = 0) * </pre> * * <pre> * -C * Use canopies to reduce the number of distance calculations. * </pre> * * <pre> * -max-candidates <num> * Maximum number of candidate canopies to retain in memory * at any one time when using canopy clustering. * T2 distance plus, data characteristics, * will determine how many candidate canopies are formed before * periodic and final pruning are performed, which might result * in exceess memory consumption. This setting avoids large numbers * of candidate canopies consuming memory. (default = 100) * </pre> * * <pre> * -periodic-pruning <num> * How often to prune low density canopies when using canopy clustering. * (default = every 10,000 training instances) * </pre> * * <pre> * -min-density * Minimum canopy density, when using canopy clustering, below which * a canopy will be pruned during periodic pruning. (default = 2 instances) * </pre> * * <pre> * -t2 * The T2 distance to use when using canopy clustering. Values < 0 indicate that * a heuristic based on attribute std. deviation should be used to set this. * (default = -1.0) * </pre> * * <pre> * -t1 * The T1 distance to use when using canopy clustering. A value < 0 is taken as a * positive multiplier for T2. (default = -1.5) * </pre> * * <pre> * -V * Display std. deviations for centroids. * </pre> * * <pre> * -M * Don't replace missing values with mean/mode. * </pre> * * <pre> * -A <classname and options> * Distance function to use. * (default: weka.core.EuclideanDistance) * </pre> * * <pre> * -I <num> * Maximum number of iterations. * </pre> * * <pre> * -O * Preserve order of instances. * </pre> * * <pre> * -fast * Enables faster distance calculations, using cut-off values. * Disables the calculation/output of squared errors/distances. * </pre> * * <pre> * -num-slots <num> * Number of execution slots. * (default 1 - i.e. no parallelism) * </pre> * * <pre> * -S <num> * Random number seed. * (default 10) * </pre> * * <pre> * -output-debug-info * If set, clusterer is run in debug mode and * may output additional info to the console * </pre> * * <pre> * -do-not-check-capabilities * If set, clusterer capabilities are not checked before clusterer is built * (use with caution). * </pre> * * <!-- options-end --> * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ @Override public void setOptions(String[] options) throws Exception { m_displayStdDevs = Utils.getFlag("V", options); m_dontReplaceMissing = Utils.getFlag("M", options); String initM = Utils.getOption("init", options); if (initM.length() > 0) { setInitializationMethod(new SelectedTag(Integer.parseInt(initM), TAGS_SELECTION)); } m_speedUpDistanceCompWithCanopies = Utils.getFlag('C', options); String temp = Utils.getOption("max-candidates", options); if (temp.length() > 0) { setCanopyMaxNumCanopiesToHoldInMemory(Integer.parseInt(temp)); } temp = Utils.getOption("periodic-pruning", options); if (temp.length() > 0) { setCanopyPeriodicPruningRate(Integer.parseInt(temp)); } temp = Utils.getOption("min-density", options); if (temp.length() > 0) { setCanopyMinimumCanopyDensity(Double.parseDouble(temp)); } temp = Utils.getOption("t2", options); if (temp.length() > 0) { setCanopyT2(Double.parseDouble(temp)); } temp = Utils.getOption("t1", options); if (temp.length() > 0) { setCanopyT1(Double.parseDouble(temp)); } String optionString = Utils.getOption('N', options); if (optionString.length() != 0) { setNumClusters(Integer.parseInt(optionString)); } optionString = Utils.getOption("I", options); if (optionString.length() != 0) { setMaxIterations(Integer.parseInt(optionString)); } String distFunctionClass = Utils.getOption('A', options); if (distFunctionClass.length() != 0) { String distFunctionClassSpec[] = Utils.splitOptions(distFunctionClass); if (distFunctionClassSpec.length == 0) { throw new Exception("Invalid DistanceFunction specification string."); } String className = distFunctionClassSpec[0]; distFunctionClassSpec[0] = ""; setDistanceFunction( (DistanceFunction) Utils.forName(DistanceFunction.class, className, distFunctionClassSpec)); } else { setDistanceFunction(new EuclideanDistance()); } m_PreserveOrder = Utils.getFlag("O", options); m_FastDistanceCalc = Utils.getFlag("fast", options); String slotsS = Utils.getOption("num-slots", options); if (slotsS.length() > 0) { setNumExecutionSlots(Integer.parseInt(slotsS)); } super.setOptions(options); Utils.checkForRemainingOptions(options); } /** * Gets the current settings of SimpleKMeans. * * @return an array of strings suitable for passing to setOptions() */ @Override public String[] getOptions() { Vector<String> result = new Vector<String>(); result.add("-init"); result.add("" + getInitializationMethod().getSelectedTag().getID()); if (m_speedUpDistanceCompWithCanopies) { result.add("-C"); } result.add("-max-candidates"); result.add("" + getCanopyMaxNumCanopiesToHoldInMemory()); result.add("-periodic-pruning"); result.add("" + getCanopyPeriodicPruningRate()); result.add("-min-density"); result.add("" + getCanopyMinimumCanopyDensity()); result.add("-t1"); result.add("" + getCanopyT1()); result.add("-t2"); result.add("" + getCanopyT2()); if (m_displayStdDevs) { result.add("-V"); } if (m_dontReplaceMissing) { result.add("-M"); } result.add("-N"); result.add("" + getNumClusters()); result.add("-A"); result.add( (m_DistanceFunction.getClass().getName() + " " + Utils.joinOptions(m_DistanceFunction.getOptions())) .trim()); result.add("-I"); result.add("" + getMaxIterations()); if (m_PreserveOrder) { result.add("-O"); } if (m_FastDistanceCalc) { result.add("-fast"); } result.add("-num-slots"); result.add("" + getNumExecutionSlots()); Collections.addAll(result, super.getOptions()); return result.toArray(new String[result.size()]); } /** * return a string describing this clusterer. * * @return a description of the clusterer as a string */ @Override public String toString() { if (m_ClusterCentroids == null) { return "No clusterer built yet!"; } int maxWidth = 0; int maxAttWidth = 0; boolean containsNumeric = false; for (int i = 0; i < m_NumClusters; i++) { for (int j = 0; j < m_ClusterCentroids.numAttributes(); j++) { if (m_ClusterCentroids.attribute(j).name().length() > maxAttWidth) { maxAttWidth = m_ClusterCentroids.attribute(j).name().length(); } if (m_ClusterCentroids.attribute(j).isNumeric()) { containsNumeric = true; double width = Math.log(Math.abs(m_ClusterCentroids.instance(i).value(j))) / Math.log(10.0); if (width < 0) { width = 1; } // decimal + # decimal places + 1 width += 6.0; if ((int) width > maxWidth) { maxWidth = (int) width; } } } } for (int i = 0; i < m_ClusterCentroids.numAttributes(); i++) { if (m_ClusterCentroids.attribute(i).isNominal()) { Attribute a = m_ClusterCentroids.attribute(i); for (int j = 0; j < m_ClusterCentroids.numInstances(); j++) { String val = a.value((int) m_ClusterCentroids.instance(j).value(i)); if (val.length() > maxWidth) { maxWidth = val.length(); } } for (int j = 0; j < a.numValues(); j++) { String val = a.value(j) + " "; if (val.length() > maxAttWidth) { maxAttWidth = val.length(); } } } } if (m_displayStdDevs) { // check for maximum width of maximum frequency count for (int i = 0; i < m_ClusterCentroids.numAttributes(); i++) { if (m_ClusterCentroids.attribute(i).isNominal()) { int maxV = Utils.maxIndex(m_FullNominalCounts[i]); /* * int percent = (int)((double)m_FullNominalCounts[i][maxV] / * Utils.sum(m_ClusterSizes) * 100.0); */ int percent = 6; // max percent width (100%) String nomV = "" + m_FullNominalCounts[i][maxV]; // + " (" + percent + "%)"; if (nomV.length() + percent > maxWidth) { maxWidth = nomV.length() + 1; } } } } // check for size of cluster sizes for (double m_ClusterSize : m_ClusterSizes) { String size = "(" + m_ClusterSize + ")"; if (size.length() > maxWidth) { maxWidth = size.length(); } } if (m_displayStdDevs && maxAttWidth < "missing".length()) { maxAttWidth = "missing".length(); } String plusMinus = "+/-"; maxAttWidth += 2; if (m_displayStdDevs && containsNumeric) { maxWidth += plusMinus.length(); } if (maxAttWidth < "Attribute".length() + 2) { maxAttWidth = "Attribute".length() + 2; } if (maxWidth < "Full Data".length()) { maxWidth = "Full Data".length() + 1; } if (maxWidth < "missing".length()) { maxWidth = "missing".length() + 1; } StringBuffer temp = new StringBuffer(); temp.append("\nkMeans\n======\n"); temp.append("\nNumber of iterations: " + m_Iterations); if (!m_FastDistanceCalc) { temp.append("\n"); if (m_DistanceFunction instanceof EuclideanDistance) { temp.append("Within cluster sum of squared errors: " + Utils.sum(m_squaredErrors)); } else { temp.append("Sum of within cluster distances: " + Utils.sum(m_squaredErrors)); } } temp.append("\n\nInitial starting points ("); switch (m_initializationMethod) { case FARTHEST_FIRST: temp.append("farthest first"); break; case KMEANS_PLUS_PLUS: temp.append("k-means++"); break; case CANOPY: temp.append("canopy"); break; default: temp.append("random"); } temp.append("):\n"); if (m_initializationMethod != CANOPY) { temp.append("\n"); for (int i = 0; i < m_initialStartPoints.numInstances(); i++) { temp.append("Cluster " + i + ": " + m_initialStartPoints.instance(i)).append("\n"); } } else { temp.append(m_canopyClusters.toString(false)); } if (m_speedUpDistanceCompWithCanopies) { temp.append("\nReduced number of distance calculations by using canopies."); if (m_initializationMethod != CANOPY) { temp.append("\nCanopy T2 radius: " + String.format("%-10.3f", m_canopyClusters.getActualT2())); temp.append("\nCanopy T1 radius: " + String.format("%-10.3f", m_canopyClusters.getActualT1())) .append("\n"); } } if (!m_dontReplaceMissing) { temp.append("\nMissing values globally replaced with mean/mode"); } temp.append("\n\nFinal cluster centroids:\n"); temp.append(pad("Cluster#", " ", (maxAttWidth + (maxWidth * 2 + 2)) - "Cluster#".length(), true)); temp.append("\n"); temp.append(pad("Attribute", " ", maxAttWidth - "Attribute".length(), false)); temp.append(pad("Full Data", " ", maxWidth + 1 - "Full Data".length(), true)); // cluster numbers for (int i = 0; i < m_NumClusters; i++) { String clustNum = "" + i; temp.append(pad(clustNum, " ", maxWidth + 1 - clustNum.length(), true)); } temp.append("\n"); // cluster sizes String cSize = "(" + Utils.sum(m_ClusterSizes) + ")"; temp.append(pad(cSize, " ", maxAttWidth + maxWidth + 1 - cSize.length(), true)); for (int i = 0; i < m_NumClusters; i++) { cSize = "(" + m_ClusterSizes[i] + ")"; temp.append(pad(cSize, " ", maxWidth + 1 - cSize.length(), true)); } temp.append("\n"); temp.append(pad("", "=", maxAttWidth + (maxWidth * (m_ClusterCentroids.numInstances() + 1) + m_ClusterCentroids.numInstances() + 1), true)); temp.append("\n"); for (int i = 0; i < m_ClusterCentroids.numAttributes(); i++) { String attName = m_ClusterCentroids.attribute(i).name(); temp.append(attName); for (int j = 0; j < maxAttWidth - attName.length(); j++) { temp.append(" "); } String strVal; String valMeanMode; // full data if (m_ClusterCentroids.attribute(i).isNominal()) { if (m_FullMeansOrMediansOrModes[i] == -1) { // missing valMeanMode = pad("missing", " ", maxWidth + 1 - "missing".length(), true); } else { valMeanMode = pad( (strVal = m_ClusterCentroids.attribute(i).value((int) m_FullMeansOrMediansOrModes[i])), " ", maxWidth + 1 - strVal.length(), true); } } else { if (Double.isNaN(m_FullMeansOrMediansOrModes[i])) { valMeanMode = pad("missing", " ", maxWidth + 1 - "missing".length(), true); } else { valMeanMode = pad( (strVal = Utils.doubleToString(m_FullMeansOrMediansOrModes[i], maxWidth, 4).trim()), " ", maxWidth + 1 - strVal.length(), true); } } temp.append(valMeanMode); for (int j = 0; j < m_NumClusters; j++) { if (m_ClusterCentroids.attribute(i).isNominal()) { if (m_ClusterCentroids.instance(j).isMissing(i)) { valMeanMode = pad("missing", " ", maxWidth + 1 - "missing".length(), true); } else { valMeanMode = pad( (strVal = m_ClusterCentroids.attribute(i) .value((int) m_ClusterCentroids.instance(j).value(i))), " ", maxWidth + 1 - strVal.length(), true); } } else { if (m_ClusterCentroids.instance(j).isMissing(i)) { valMeanMode = pad("missing", " ", maxWidth + 1 - "missing".length(), true); } else { valMeanMode = pad((strVal = Utils .doubleToString(m_ClusterCentroids.instance(j).value(i), maxWidth, 4).trim()), " ", maxWidth + 1 - strVal.length(), true); } } temp.append(valMeanMode); } temp.append("\n"); if (m_displayStdDevs) { // Std devs/max nominal String stdDevVal = ""; if (m_ClusterCentroids.attribute(i).isNominal()) { // Do the values of the nominal attribute Attribute a = m_ClusterCentroids.attribute(i); for (int j = 0; j < a.numValues(); j++) { // full data String val = " " + a.value(j); temp.append(pad(val, " ", maxAttWidth + 1 - val.length(), false)); double count = m_FullNominalCounts[i][j]; int percent = (int) ((double) m_FullNominalCounts[i][j] / Utils.sum(m_ClusterSizes) * 100.0); String percentS = "" + percent + "%)"; percentS = pad(percentS, " ", 5 - percentS.length(), true); stdDevVal = "" + count + " (" + percentS; stdDevVal = pad(stdDevVal, " ", maxWidth + 1 - stdDevVal.length(), true); temp.append(stdDevVal); // Clusters for (int k = 0; k < m_NumClusters; k++) { percent = (int) ((double) m_ClusterNominalCounts[k][i][j] / m_ClusterSizes[k] * 100.0); percentS = "" + percent + "%)"; percentS = pad(percentS, " ", 5 - percentS.length(), true); stdDevVal = "" + m_ClusterNominalCounts[k][i][j] + " (" + percentS; stdDevVal = pad(stdDevVal, " ", maxWidth + 1 - stdDevVal.length(), true); temp.append(stdDevVal); } temp.append("\n"); } // missing (if any) if (m_FullMissingCounts[i] > 0) { // Full data temp.append(pad(" missing", " ", maxAttWidth + 1 - " missing".length(), false)); double count = m_FullMissingCounts[i]; int percent = (int) ((double) m_FullMissingCounts[i] / Utils.sum(m_ClusterSizes) * 100.0); String percentS = "" + percent + "%)"; percentS = pad(percentS, " ", 5 - percentS.length(), true); stdDevVal = "" + count + " (" + percentS; stdDevVal = pad(stdDevVal, " ", maxWidth + 1 - stdDevVal.length(), true); temp.append(stdDevVal); // Clusters for (int k = 0; k < m_NumClusters; k++) { percent = (int) ((double) m_ClusterMissingCounts[k][i] / m_ClusterSizes[k] * 100.0); percentS = "" + percent + "%)"; percentS = pad(percentS, " ", 5 - percentS.length(), true); stdDevVal = "" + m_ClusterMissingCounts[k][i] + " (" + percentS; stdDevVal = pad(stdDevVal, " ", maxWidth + 1 - stdDevVal.length(), true); temp.append(stdDevVal); } temp.append("\n"); } temp.append("\n"); } else { // Full data if (Double.isNaN(m_FullMeansOrMediansOrModes[i])) { stdDevVal = pad("--", " ", maxAttWidth + maxWidth + 1 - 2, true); } else { stdDevVal = pad( (strVal = plusMinus + Utils.doubleToString(m_FullStdDevs[i], maxWidth, 4).trim()), " ", maxWidth + maxAttWidth + 1 - strVal.length(), true); } temp.append(stdDevVal); // Clusters for (int j = 0; j < m_NumClusters; j++) { if (m_ClusterCentroids.instance(j).isMissing(i)) { stdDevVal = pad("--", " ", maxWidth + 1 - 2, true); } else { stdDevVal = pad((strVal = plusMinus + Utils .doubleToString(m_ClusterStdDevs.instance(j).value(i), maxWidth, 4).trim()), " ", maxWidth + 1 - strVal.length(), true); } temp.append(stdDevVal); } temp.append("\n\n"); } } } temp.append("\n\n"); return temp.toString(); } private String pad(String source, String padChar, int length, boolean leftPad) { StringBuffer temp = new StringBuffer(); if (leftPad) { for (int i = 0; i < length; i++) { temp.append(padChar); } temp.append(source); } else { temp.append(source); for (int i = 0; i < length; i++) { temp.append(padChar); } } return temp.toString(); } /** * Gets the the cluster centroids. * * @return the cluster centroids */ public Instances getClusterCentroids() { return m_ClusterCentroids; } /** * Gets the standard deviations of the numeric attributes in each cluster. * * @return the standard deviations of the numeric attributes in each cluster */ public Instances getClusterStandardDevs() { return m_ClusterStdDevs; } /** * Returns for each cluster the weighted frequency counts for the values of each * nominal attribute. * * @return the counts */ public double[][][] getClusterNominalCounts() { return m_ClusterNominalCounts; } /** * Gets the squared error for all clusters. * * @return the squared error, NaN if fast distance calculation is used * @see #m_FastDistanceCalc */ public double getSquaredError() { if (m_FastDistanceCalc) { return Double.NaN; } else { return Utils.sum(m_squaredErrors); } } /** * Gets the sum of weights for all the instances in each cluster. * * @return The number of instances in each cluster */ public double[] getClusterSizes() { return m_ClusterSizes; } /** * Gets the assignments for each instance. * * @return Array of indexes of the centroid assigned to each instance * @throws Exception if order of instances wasn't preserved or no assignments * were made */ public int[] getAssignments() throws Exception { if (!m_PreserveOrder) { throw new Exception("The assignments are only available when order of instances is preserved (-O)"); } if (m_Assignments == null) { throw new Exception("No assignments made."); } return m_Assignments; } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision$"); } /** * Main method for executing this class. * * @param args use -h to list all parameters */ public static void main(String[] args) { runClusterer(new SimpleKMeans(), args); } }