Java tutorial
/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ package mulan.examples; import java.util.Arrays; import mulan.data.MultiLabelInstances; import mulan.dimensionalityReduction.BinaryRelevanceAttributeEvaluator; import mulan.dimensionalityReduction.Ranker; import weka.attributeSelection.ASEvaluation; import weka.attributeSelection.GainRatioAttributeEval; import weka.attributeSelection.ReliefFAttributeEval; import weka.core.Instances; import weka.core.Utils; import weka.filters.Filter; import weka.filters.unsupervised.attribute.Remove; public class InformationGainDimensionalityReduction { public static void main(String[] args) throws Exception { String path = Utils.getOption("path", args); String filestem = Utils.getOption("filestem", args); MultiLabelInstances mlData = new MultiLabelInstances(path + filestem + ".arff", path + filestem + ".xml"); String attributesToKeep = Utils.getOption("numattribs", args); final int NUM_TO_KEEP = Integer.parseInt(attributesToKeep); ASEvaluation ase = new GainRatioAttributeEval(); BinaryRelevanceAttributeEvaluator ae = new BinaryRelevanceAttributeEvaluator(ase, mlData, "max", "dl", "eval"); System.out.println(mlData.getDataSet().numAttributes()); if (NUM_TO_KEEP == 0) { for (int i = 0; i < mlData.getFeatureIndices().length; i++) { System.out .println("Attribute " + mlData.getDataSet().attribute(mlData.getFeatureIndices()[i]).name() + " : " + ae.evaluateAttribute( mlData.getDataSet().attribute(mlData.getFeatureIndices()[i]).index())); } } else { Ranker r = new Ranker(); int[] result = r.search(ae, mlData); System.out.println(Arrays.toString(result)); int[] toKeep = new int[NUM_TO_KEEP + mlData.getNumLabels()]; System.arraycopy(result, 0, toKeep, 0, NUM_TO_KEEP); int[] labelIndices = mlData.getLabelIndices(); System.arraycopy(labelIndices, 0, toKeep, NUM_TO_KEEP, mlData.getNumLabels()); Remove filterRemove = new Remove(); filterRemove.setAttributeIndicesArray(toKeep); filterRemove.setInvertSelection(true); filterRemove.setInputFormat(mlData.getDataSet()); Instances filtered = Filter.useFilter(mlData.getDataSet(), filterRemove); MultiLabelInstances mlFiltered = new MultiLabelInstances(filtered, mlData.getLabelsMetaData()); System.out.println("\n\n\n\n" + mlFiltered.getDataSet()); } // You can now work on the reduced multi-label dataset mlFiltered } }