Java tutorial
/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* * BinaryRelevance.java * Copyright (C) 2009-2010 Aristotle University of Thessaloniki, Thessaloniki, Greece */ package mulan.classifier.transformation; import mulan.classifier.MultiLabelOutput; import mulan.data.MultiLabelInstances; import weka.classifiers.AbstractClassifier; import weka.classifiers.Classifier; import weka.classifiers.meta.FilteredClassifier; import weka.core.Attribute; import weka.core.Instance; import weka.core.Instances; import weka.filters.unsupervised.attribute.Remove; /** * * <!-- globalinfo-start --> * * Class that implements the Binary Relevance (BR) method. For more information, see <br/> * <br/> * G. Tsoumakas, I. Katakis, I. Vlahavas, "Mining Multi-label Data", * Data Mining and Knowledge Discovery Handbook (draft of preliminary accepted chapter), * O. Maimon, L. Rokach (Ed.), 2nd edition, Springer, 2009. * </p> * * <!-- globalinfo-end --> * * <!-- technical-bibtex-start --> * BibTeX: * * <pre> * @inbook{tsoumakas+etal:2009, * author = {Tsoumakas, G. and Katakis, I. and Vlahavas, I.}, * title = {Mining Multi-label Data}, * booktitle = {Data Mining and Knowledge Discovery Handbook, 2nd edition}, * year = {2009}, * editor = {Maimon, O. and Rokach, L.}, * } * </pre> * * <p/> <!-- technical-bibtex-end --> * * @author Robert Friberg * @author Grigorios Tsoumakas * @version $Revision: 0.05$ */ public class BinaryRelevance extends TransformationBasedMultiLabelLearner { /** * The ensemble of binary relevance models. These are Weka FilteredClassifier * objects, where the filter corresponds to removing all label apart from * the one that serves as a target for the corresponding model. */ protected FilteredClassifier[] ensemble; /** * Creates a new instance * * @param classifier the base-level classification algorithm that will * be used for training each of the binary models */ public BinaryRelevance(Classifier classifier) { super(classifier); } protected void buildInternal(MultiLabelInstances train) throws Exception { numLabels = train.getNumLabels(); ensemble = new FilteredClassifier[numLabels]; Instances trainingData = train.getDataSet(); for (int i = 0; i < numLabels; i++) { ensemble[i] = new FilteredClassifier(); ensemble[i].setClassifier(AbstractClassifier.makeCopy(baseClassifier)); // Indices of attributes to remove int[] indicesToRemove = new int[numLabels - 1]; int counter2 = 0; for (int counter1 = 0; counter1 < numLabels; counter1++) { if (labelIndices[counter1] != labelIndices[i]) { indicesToRemove[counter2] = labelIndices[counter1]; counter2++; } } Remove remove = new Remove(); remove.setAttributeIndicesArray(indicesToRemove); remove.setInputFormat(trainingData); remove.setInvertSelection(false); ensemble[i].setFilter(remove); trainingData.setClassIndex(labelIndices[i]); // debug("Bulding model " + (i + 1) + "/" + numLabels); System.out.println("Bulding model " + (i + 1) + "/" + numLabels); ensemble[i].buildClassifier(trainingData); } } protected MultiLabelOutput makePredictionInternal(Instance instance) throws Exception { boolean[] bipartition = new boolean[numLabels]; double[] confidences = new double[numLabels]; for (int counter = 0; counter < numLabels; counter++) { double distribution[] = new double[2]; try { distribution = ensemble[counter].distributionForInstance(instance); } catch (Exception e) { System.out.println(e); return null; } int maxIndex = (distribution[0] > distribution[1]) ? 0 : 1; // Ensure correct predictions both for class values {0,1} and {1,0} Attribute classAttribute = ensemble[counter].getFilter().getOutputFormat().classAttribute(); bipartition[counter] = (classAttribute.value(maxIndex).equals("1")) ? true : false; // The confidence of the label being equal to 1 confidences[counter] = distribution[classAttribute.indexOfValue("1")]; } MultiLabelOutput mlo = new MultiLabelOutput(bipartition, confidences); return mlo; } }