weka.classifiers.meta.FilteredClassifier.java Source code

Java tutorial

Introduction

Here is the source code for weka.classifiers.meta.FilteredClassifier.java

Source

/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

/*
 *    FilteredClassifier.java
 *    Copyright (C) 1999-2012 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.classifiers.meta;

import weka.classifiers.IterativeClassifier;
import weka.classifiers.RandomizableSingleClassifierEnhancer;
import weka.core.*;
import weka.core.Capabilities.Capability;
import weka.filters.Filter;
import weka.filters.supervised.attribute.AttributeSelection;
import weka.filters.unsupervised.attribute.Reorder;

import java.util.*;

/**
 * <!-- globalinfo-start --> Class for running an arbitrary classifier on data
 * that has been passed through an arbitrary filter. Like the classifier, the
 * structure of the filter is based exclusively on the training data and test
 * instances will be processed by the filter without changing their structure.
 * If unequal instance weights or attribute weights are present, and the filter
 * or the classifier are unable to deal with them, the instances and/or attributes
 * are resampled with replacement based on the weights before they are passed
 * to the filter or the classifier (as appropriate).
 * <p/>
 * <!-- globalinfo-end -->
 *
 * <!-- options-start --> Valid options are:
 * <p/>
 * 
 * <pre>
 * -F &lt;filter specification&gt;
 *  Full class name of filter to use, followed
 *  by filter options.
 *  default: "weka.filters.supervised.attribute.Discretize -R first-last -precision 6"
 * </pre>
 *
 * <pre>
 * -W &lt;classifier name&gt;
 *  Full name of base classifier.
 *  (default: weka.classifiers.trees.J48)
 * </pre>
 *
 * <pre> -S num
 * The random number seed to be used (default 1). </pre>
 *
 * -doNotCheckForModifiedClassAttribute <br>
 * If this is set, the classifier will not check whether the filter modifies the class attribute (use with caution).
 * <p>
 *
 * -output-debug-info <br>
 * If set, classifier is run in debug mode and may output additional info to
 * the console.
 * <p>
 *
 * -do-not-check-capabilities <br>
 * If set, classifier capabilities are not checked before classifier is built
 * (use with caution).
 * <p>
 *
 * -num-decimal-places <br>
 * The number of decimal places for the output of numbers in the model.
 * <p>
 *
 * -batch-size <br>
 * The desired batch size for batch prediction.
 * <p>
 *
 * <pre>
 * Options specific to classifier weka.classifiers.trees.J48:
 * </pre>
 * 
 * <pre>
 * -U
 *  Use unpruned tree.
 * </pre>
 * 
 * <pre>
 * -C &lt;pruning confidence&gt;
 *  Set confidence threshold for pruning.
 *  (default 0.25)
 * </pre>
 * 
 * <pre>
 * -M &lt;minimum number of instances&gt;
 *  Set minimum number of instances per leaf.
 *  (default 2)
 * </pre>
 * 
 * <pre>
 * -R
 *  Use reduced error pruning.
 * </pre>
 * 
 * <pre>
 * -N &lt;number of folds&gt;
 *  Set number of folds for reduced error
 *  pruning. One fold is used as pruning set.
 *  (default 3)
 * </pre>
 * 
 * <pre>
 * -B
 *  Use binary splits only.
 * </pre>
 * 
 * <pre>
 * -S
 *  Don't perform subtree raising.
 * </pre>
 * 
 * <pre>
 * -L
 *  Do not clean up after the tree has been built.
 * </pre>
 * 
 * <pre>
 * -A
 *  Laplace smoothing for predicted probabilities.
 * </pre>
 * 
 * <pre>
 * -S &lt;seed&gt;
 *  Seed for random data shuffling (default 1).
 * </pre>
 * 
 * <!-- options-end -->
 *
 * @author Len Trigg (trigg@cs.waikato.ac.nz)
 * @version $Revision$
 */
public class FilteredClassifier extends RandomizableSingleClassifierEnhancer
        implements Drawable, PartitionGenerator, IterativeClassifier, BatchPredictor, WeightedInstancesHandler,
        WeightedAttributesHandler {

    /** for serialization */
    static final long serialVersionUID = -4523450618538717400L;

    /** The filter */
    protected Filter m_Filter = new AttributeSelection();

    /** The instance structure of the filtered instances */
    protected Instances m_FilteredInstances;

    /** Flag that can be set to true if class attribute is not to be checked for modifications by the filer. */
    protected boolean m_DoNotCheckForModifiedClassAttribute = false;

    /** If the attributes are resampled, we store the filter for this */
    protected Reorder m_ReorderOriginal;
    protected Reorder m_ReorderFiltered;

    /**
     * Returns a string describing this classifier
     * 
     * @return a description of the classifier suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String globalInfo() {
        return "Class for running an arbitrary classifier on data that has been passed "
                + "through an arbitrary filter. Like the classifier, the structure of the filter "
                + "is based exclusively on the training data and test instances will be processed "
                + "by the filter without changing their structure.\n\n"
                + "If unequal instance weights or attribute weights are present, and the filter "
                + "or the classifier are unable to deal with them, the instances and/or attributes "
                + "are resampled with replacement based on the weights before they are passed "
                + "to the filter or the classifier (as appropriate).";
    }

    /**
     * String describing default classifier.
     * 
     * @return the default classifier classname
     */
    protected String defaultClassifierString() {

        return "weka.classifiers.trees.J48";
    }

    /**
     * String describing default filter.
     */
    protected String defaultFilterString() {

        return "weka.filters.supervised.attribute.Discretize -R first-last -precision 6";
    }

    /**
     * Default constructor.
     */
    public FilteredClassifier() {

        m_Classifier = new weka.classifiers.trees.J48();
        m_Filter = new weka.filters.supervised.attribute.Discretize();
    }

    /**
     * Returns the type of graph this classifier represents.
     * 
     * @return the graph type of this classifier
     */
    public int graphType() {

        if (m_Classifier instanceof Drawable)
            return ((Drawable) m_Classifier).graphType();
        else
            return Drawable.NOT_DRAWABLE;
    }

    /**
     * Returns graph describing the classifier (if possible).
     *
     * @return the graph of the classifier in dotty format
     * @throws Exception if the classifier cannot be graphed
     */
    public String graph() throws Exception {

        if (m_Classifier instanceof Drawable)
            return ((Drawable) m_Classifier).graph();
        else
            throw new Exception("Classifier: " + getClassifierSpec() + " cannot be graphed");
    }

    /**
     * Builds the classifier to generate a partition. (If the base classifier
     * supports this.)
     */
    public void generatePartition(Instances data) throws Exception {

        if (m_Classifier instanceof PartitionGenerator)
            buildClassifier(data);
        else
            throw new Exception("Classifier: " + getClassifierSpec() + " cannot generate a partition");
    }

    /**
     * Computes an array that has a value for each element in the partition. (If
     * the base classifier supports this.)
     */
    public double[] getMembershipValues(Instance inst) throws Exception {

        if (m_Classifier instanceof PartitionGenerator) {
            if (m_ReorderOriginal != null) {
                m_ReorderOriginal.input(inst);
                inst = m_ReorderOriginal.output();
            }
            Instance newInstance = filterInstance(inst);
            if (newInstance == null) {
                double[] unclassified = new double[numElements()];
                for (int i = 0; i < unclassified.length; i++) {
                    unclassified[i] = Utils.missingValue();
                }
                return unclassified;
            } else {
                if (m_ReorderFiltered != null) {
                    m_ReorderFiltered.input(newInstance);
                    newInstance = m_ReorderFiltered.output();
                }
                return ((PartitionGenerator) m_Classifier).getMembershipValues(newInstance);
            }
        } else
            throw new Exception("Classifier: " + getClassifierSpec() + " cannot generate a partition");
    }

    /**
     * Returns the number of elements in the partition. (If the base classifier
     * supports this.)
     */
    public int numElements() throws Exception {

        if (m_Classifier instanceof PartitionGenerator)
            return ((PartitionGenerator) m_Classifier).numElements();
        else
            throw new Exception("Classifier: " + getClassifierSpec() + " cannot generate a partition");
    }

    /**
     * Initializes an iterative classifier. (If the base classifier supports
     * this.)
     *
     * @param data the instances to be used in induction
     * @exception Exception if the model cannot be initialized
     */
    @Override
    public void initializeClassifier(Instances data) throws Exception {

        if (m_Classifier == null) {
            throw new Exception("No base classifier has been set!");
        }

        getCapabilities().testWithFail(data);

        if (m_Classifier instanceof IterativeClassifier) {
            Random r = (data.numInstances() > 0) ? data.getRandomNumberGenerator(getSeed()) : new Random(getSeed());
            data = setUp(data, r);
            if (!data.allInstanceWeightsIdentical() && !(m_Classifier instanceof WeightedInstancesHandler)) {
                data = data.resampleWithWeights(r); // The filter may have assigned weights.
            }
            if (!data.allAttributeWeightsIdentical() && !(m_Classifier instanceof WeightedAttributesHandler)) {
                data = resampleAttributes(data, false, r);
            }

            // can classifier handle the data?
            getClassifier().getCapabilities().testWithFail(data);

            if (m_Classifier instanceof Randomizable) {
                ((Randomizable) m_Classifier).setSeed(r.nextInt());
            }

            ((IterativeClassifier) m_Classifier).initializeClassifier(data);
        } else {
            throw new Exception("Classifier: " + getClassifierSpec() + " is not an IterativeClassifier");
        }
    }

    /**
     * Performs one iteration. (If the base classifier supports this.)
     *
     * @return false if no further iterations could be performed, true otherwise
     * @exception Exception if this iteration fails for unexpected reasons
     */
    @Override
    public boolean next() throws Exception {

        if (m_Classifier instanceof IterativeClassifier)
            return ((IterativeClassifier) m_Classifier).next();
        else
            throw new Exception("Classifier: " + getClassifierSpec() + " is not an IterativeClassifier");
    }

    /**
     * Signal end of iterating, useful for any house-keeping/cleanup (If the base
     * classifier supports this.)
     *
     * @exception Exception if cleanup fails
     */
    @Override
    public void done() throws Exception {

        if (m_Classifier instanceof IterativeClassifier)
            ((IterativeClassifier) m_Classifier).done();
        else
            throw new Exception("Classifier: " + getClassifierSpec() + " is not an IterativeClassifier");
    }

    /**
     * Tool tip text for finalize property
     *
     * @return the tool tip text for the finalize property
     */
    public String resumeTipText() {
        return "Set whether classifier can continue training after performing the"
                + "requested number of iterations. \n\tNote that setting this to true will "
                + "retain certain data structures which can increase the \n\t"
                + "size of the model. Only applicable when the base classifier \n\t" + "is an IterativeClassifier.";
    }

    /**
     * If called with argument true, then the next time done() is called the model is effectively
     * "frozen" and no further iterations can be performed
     *
     * @param resume true if the model is to be finalized after performing iterations
     */
    public void setResume(boolean resume) throws Exception {
        if (m_Classifier instanceof IterativeClassifier) {
            ((IterativeClassifier) m_Classifier).setResume(resume);
        }
    }

    /**
     * Returns true if the model is to be finalized (or has been finalized) after
     * training.
     *
     * @return the current value of finalize
     */
    public boolean getResume() {
        if (m_Classifier instanceof IterativeClassifier) {
            return ((IterativeClassifier) m_Classifier).getResume();
        }
        return false;
    }

    /**
     * Returns an enumeration describing the available options.
     *
     * @return an enumeration of all the available options.
     */
    public Enumeration<Option> listOptions() {

        Vector<Option> newVector = new Vector<Option>(1);
        newVector.addElement(new Option("\tFull class name of filter to use, followed\n" + "\tby filter options.\n"
                + "\tdefault: \"" + defaultFilterString() + "\"", "F", 1, "-F <filter specification>"));

        newVector.addElement(new Option(
                "\tIf set, classifier will not check whether the filter modifies the class (use with caution).",
                "doNotCheckForModifiedClassAttribute", 0, "-doNotCheckForModifiedClassAttribute"));

        newVector.addAll(Collections.list(super.listOptions()));

        if (getFilter() instanceof OptionHandler) {
            newVector.addElement(new Option("", "", 0,
                    "\nOptions specific to filter " + getFilter().getClass().getName() + ":"));
            newVector.addAll(Collections.list(((OptionHandler) getFilter()).listOptions()));
        }

        return newVector.elements();
    }

    /**
     * Parses a given list of options.
     * <p/>
     *
     * <!-- options-start --> Valid options are:
     * <p/>
     *
     * <pre>
     * -F &lt;filter specification&gt;
     *  Full class name of filter to use, followed
     *  by filter options.
     *  default: "weka.filters.supervised.attribute.Discretize -R first-last -precision 6"
     * </pre>
     *
     * <pre>
     * -W &lt;classifier name&gt;
     *  Full name of base classifier.
     *  (default: weka.classifiers.trees.J48)
     * </pre>
     *
     * <pre> -S num
     * The random number seed to be used. </pre>
     *
     * -doNotCheckForModifiedClassAttribute <br>
     * If this is set, the classifier will not check whether the filter modifies the class attribute (use with caution).
     * <p>
     *
     * -output-debug-info <br>
     * If set, classifier is run in debug mode and may output additional info to
     * the console.
     * <p>
     *
     * -do-not-check-capabilities <br>
     * If set, classifier capabilities are not checked before classifier is built
     * (use with caution).
     * <p>
     *
     * -num-decimal-laces <br>
     * The number of decimal places for the output of numbers in the model.
     * <p>
     *
     * -batch-size <br>
     * The desired batch size for batch prediction.
     * <p>
     * 
     * <pre>
     * Options specific to classifier weka.classifiers.trees.J48:
     * </pre>
     * 
     * <pre>
     * -U
     *  Use unpruned tree.
     * </pre>
     * 
     * <pre>
     * -C &lt;pruning confidence&gt;
     *  Set confidence threshold for pruning.
     *  (default 0.25)
     * </pre>
     * 
     * <pre>
     * -M &lt;minimum number of instances&gt;
     *  Set minimum number of instances per leaf.
     *  (default 2)
     * </pre>
     * 
     * <pre>
     * -R
     *  Use reduced error pruning.
     * </pre>
     * 
     * <pre>
     * -N &lt;number of folds&gt;
     *  Set number of folds for reduced error
     *  pruning. One fold is used as pruning set.
     *  (default 3)
     * </pre>
     * 
     * <pre>
     * -B
     *  Use binary splits only.
     * </pre>
     * 
     * <pre>
     * -S
     *  Don't perform subtree raising.
     * </pre>
     * 
     * <pre>
     * -L
     *  Do not clean up after the tree has been built.
     * </pre>
     * 
     * <pre>
     * -A
     *  Laplace smoothing for predicted probabilities.
     * </pre>
     * 
     * <pre>
     * -Q &lt;seed&gt;
     *  Seed for random data shuffling (default 1).
     * </pre>
     * 
     * <!-- options-end -->
     *
     * @param options the list of options as an array of strings
     * @throws Exception if an option is not supported
     */
    public void setOptions(String[] options) throws Exception {

        String filterString = Utils.getOption('F', options);
        if (filterString.length() <= 0) {
            filterString = defaultFilterString();
        }
        String[] filterSpec = Utils.splitOptions(filterString);
        if (filterSpec.length == 0) {
            throw new IllegalArgumentException("Invalid filter specification string");
        }
        String filterName = filterSpec[0];
        filterSpec[0] = "";
        setFilter((Filter) Utils.forName(Filter.class, filterName, filterSpec));

        setDoNotCheckForModifiedClassAttribute(Utils.getFlag("doNotCheckForModifiedClassAttribute", options));

        super.setOptions(options);

        Utils.checkForRemainingOptions(options);
    }

    /**
     * Returns the tip text for this property
     *
     * @return       tip text for this property suitable for
     *          displaying in the explorer/experimenter gui
     */
    public String doNotCheckForModifiedClassAttributeTipText() {
        return "Turns off check for modified class attribute - use with caution.";
    }

    /**
     * Returns true if classifier checks whether class attribute has been modified by filter.
     */
    public boolean getDoNotCheckForModifiedClassAttribute() {

        return m_DoNotCheckForModifiedClassAttribute;
    }

    /**
     * Use this method to determine whether classifier checks whether class attribute has been modified by filter.
     */
    public void setDoNotCheckForModifiedClassAttribute(boolean flag) {

        m_DoNotCheckForModifiedClassAttribute = flag;
    }

    /**
     * Gets the current settings of the Classifier.
     *
     * @return an array of strings suitable for passing to setOptions
     */
    public String[] getOptions() {

        Vector<String> options = new Vector<String>();

        options.add("-F");
        options.add("" + getFilterSpec());

        if (getDoNotCheckForModifiedClassAttribute()) {
            options.add("-doNotCheckForModifiedClassAttribute");
        }

        Collections.addAll(options, super.getOptions());

        return options.toArray(new String[0]);
    }

    /**
     * Returns the tip text for this property
     * 
     * @return tip text for this property suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String filterTipText() {
        return "The filter to be used.";
    }

    /**
     * Sets the filter
     *
     * @param filter the filter with all options set.
     */
    public void setFilter(Filter filter) {

        m_Filter = filter;
    }

    /**
     * Gets the filter used.
     *
     * @return the filter
     */
    public Filter getFilter() {

        return m_Filter;
    }

    /**
     * Gets the filter specification string, which contains the class name of the
     * filter and any options to the filter
     *
     * @return the filter string.
     */
    protected String getFilterSpec() {

        Filter c = getFilter();
        if (c instanceof OptionHandler) {
            return c.getClass().getName() + " " + Utils.joinOptions(((OptionHandler) c).getOptions());
        }
        return c.getClass().getName();
    }

    /**
     * Returns default capabilities of the classifier.
     *
     * @return the capabilities of this classifier
     */
    public Capabilities getCapabilities() {
        Capabilities result;

        if (getFilter() == null)
            result = super.getCapabilities();
        else {
            result = getFilter().getCapabilities();

            // By default, check that classifier can handle the class attribute
            if (!getDoNotCheckForModifiedClassAttribute()) {
                Capabilities classes = super.getCapabilities().getClassCapabilities();
                Iterator<Capability> iter = classes.capabilities();
                result.disableAllClasses();
                while (iter.hasNext()) {
                    result.enable(iter.next());
                }
            }
        }

        // the filtered classifier always needs a class
        result.disable(Capability.NO_CLASS);

        // set dependencies
        for (Capability cap : Capability.values())
            result.enableDependency(cap);

        result.setOwner(this);

        return result;
    }

    /**
     * Sets up the filter and runs checks.
     *
     * @return filtered data
     */
    protected Instances setUp(Instances data, Random random) throws Exception {

        m_ReorderOriginal = null;
        m_ReorderFiltered = null;

        if (data.allInstanceWeightsIdentical() || (m_Filter instanceof WeightedInstancesHandler)) {
            data = new Instances(data);
        } else {
            data = data.resampleWithWeights(random);
        }
        if (!data.allAttributeWeightsIdentical() && !(m_Filter instanceof WeightedAttributesHandler)) {
            data = resampleAttributes(data, true, random);
        }

        /*
         * String fname = m_Filter.getClass().getName(); fname =
         * fname.substring(fname.lastIndexOf('.') + 1); util.Timer t =
         * util.Timer.getTimer("FilteredClassifier::" + fname); t.start();
         */
        Attribute classAttribute = (Attribute) data.classAttribute().copy();

        if (m_Filter instanceof Randomizable) {
            ((Randomizable) m_Filter).setSeed(random.nextInt());
        }

        m_Filter.setInputFormat(data); // filter capabilities are checked here
        data = Filter.useFilter(data, m_Filter);
        if ((!classAttribute.equals(data.classAttribute())) && (!m_DoNotCheckForModifiedClassAttribute)) {
            throw new IllegalArgumentException(
                    "Cannot proceed: " + getFilterSpec() + " has modified the class attribute!");
        }
        // t.stop();

        m_FilteredInstances = data.stringFreeStructure();
        return data;
    }

    /**
     * Resamples set of attributes.
     *
     * @param data the data to be filtered
     * @param original whether the original or the filtered data are to be resampled
     * @param random the random number generator to use
     */
    protected Instances resampleAttributes(Instances data, boolean original, Random random) throws Exception {

        // Need to sample attributes so that weights are represented by sample
        int nAtt = (data.classIndex() >= 0) ? data.numAttributes() - 1 : data.numAttributes();
        int index = 0;
        double[] attributeWeights = new double[nAtt];
        for (int i = 0; i < data.numAttributes(); i++) {
            if (i != data.classIndex()) {
                attributeWeights[index++] = data.attribute(i).weight();
            }
        }
        int[] frequencies = Utils.takeSample(attributeWeights, random);

        // Make list of attribute indices based on frequencies in sample
        ArrayList<Integer> al = new ArrayList<Integer>();
        index = 0;
        for (int j = 0; j < data.numAttributes(); j++) {
            if (j == data.classIndex()) {
                al.add(j);
            } else {
                for (int i = 0; i < frequencies[index]; i++) {
                    al.add(j);
                }
                index++;
            }
        }

        // Filter data
        if (original) {
            m_ReorderOriginal = new Reorder();
            m_ReorderOriginal.setAttributeIndicesArray(al.stream().mapToInt(j -> j).toArray());
            m_ReorderOriginal.setAllAttributeWeightsToOne(true);
            m_ReorderOriginal.setInputFormat(data);
            return Filter.useFilter(data, m_ReorderOriginal);
        } else {
            m_ReorderFiltered = new Reorder();
            m_ReorderFiltered.setAttributeIndicesArray(al.stream().mapToInt(j -> j).toArray());
            m_ReorderFiltered.setAllAttributeWeightsToOne(true);
            m_ReorderFiltered.setInputFormat(data);
            return Filter.useFilter(data, m_ReorderFiltered);
        }
    }

    /**
     * Build the classifier on the filtered data.
     *
     * @param data the training data
     * @throws Exception if the classifier could not be built successfully
     */
    public void buildClassifier(Instances data) throws Exception {

        if (m_Classifier == null) {
            throw new Exception("No base classifier has been set!");
        }

        getCapabilities().testWithFail(data);

        Random r = (data.numInstances() > 0) ? data.getRandomNumberGenerator(getSeed()) : new Random(getSeed());
        data = setUp(data, r);
        if (!data.allInstanceWeightsIdentical() && !(m_Classifier instanceof WeightedInstancesHandler)) {
            data = data.resampleWithWeights(r); // The filter may have assigned weights.
        }
        if (!data.allAttributeWeightsIdentical() && !(m_Classifier instanceof WeightedAttributesHandler)) {
            data = resampleAttributes(data, false, r);
        }

        // can classifier handle the data?
        getClassifier().getCapabilities().testWithFail(data);

        if (m_Classifier instanceof Randomizable) {
            ((Randomizable) m_Classifier).setSeed(r.nextInt());
        }

        m_Classifier.buildClassifier(data);
    }

    /**
     * Filters the instance so that it can subsequently be classified.
     */
    protected Instance filterInstance(Instance instance) throws Exception {

        /*
         * System.err.println("FilteredClassifier:: " +
         * m_Filter.getClass().getName() + " in: " + instance);
         */
        if (m_Filter.numPendingOutput() > 0) {
            throw new Exception("Filter output queue not empty!");
        }
        /*
         * String fname = m_Filter.getClass().getName(); fname =
         * fname.substring(fname.lastIndexOf('.') + 1); util.Timer t =
         * util.Timer.getTimer("FilteredClassifier::" + fname); t.start();
         */
        if (!m_Filter.input(instance)) {
            if (!m_Filter.mayRemoveInstanceAfterFirstBatchDone()) {
                throw new Exception("Filter didn't make the test instance" + " immediately available!");
            } else {
                m_Filter.batchFinished();
                return null;
            }
        }
        m_Filter.batchFinished();
        return m_Filter.output();
        // t.stop();
        /*
         * System.err.println("FilteredClassifier:: " +
         * m_Filter.getClass().getName() + " out: " + newInstance);
         */
    }

    /**
     * Classifies a given instance after filtering.
     *
     * @param instance the instance to be classified
     * @return the class distribution for the given instance
     * @throws Exception if instance could not be classified successfully
     */
    public double[] distributionForInstance(Instance instance) throws Exception {

        if (m_ReorderOriginal != null) {
            m_ReorderOriginal.input(instance);
            instance = m_ReorderOriginal.output();
        }
        Instance newInstance = filterInstance(instance);
        if (newInstance == null) {

            // filter has consumed the instance (e.g. RemoveWithValues
            // may do this). We will indicate no prediction for this
            // instance
            double[] unclassified = null;
            if (instance.classAttribute().isNumeric()) {
                unclassified = new double[1];
                unclassified[0] = Utils.missingValue();
            } else {
                // all zeros
                unclassified = new double[instance.classAttribute().numValues()];
            }
            return unclassified;
        } else {
            if (m_ReorderFiltered != null) {
                m_ReorderFiltered.input(newInstance);
                newInstance = m_ReorderFiltered.output();
            }
            return m_Classifier.distributionForInstance(newInstance);
        }
    }

    /**
     * Tool tip text for this property
     * 
     * @return the tool tip for this property
     */
    public String batchSizeTipText() {
        return "Batch size to use if base learner is a BatchPredictor";
    }

    /**
     * Set the batch size to use. Gets passed through to the base learner if it
     * implements BatchPredictor. Otherwise it is just ignored.
     *
     * @param size the batch size to use
     */
    public void setBatchSize(String size) {

        if (getClassifier() instanceof BatchPredictor) {
            ((BatchPredictor) getClassifier()).setBatchSize(size);
        } else {
            super.setBatchSize(size);
        }
    }

    /**
     * Gets the preferred batch size from the base learner if it implements
     * BatchPredictor. Returns 1 as the preferred batch size otherwise.
     *
     * @return the batch size to use
     */
    public String getBatchSize() {

        if (getClassifier() instanceof BatchPredictor) {
            return ((BatchPredictor) getClassifier()).getBatchSize();
        } else {
            return super.getBatchSize();
        }
    }

    /**
     * Batch scoring method. Calls the appropriate method for the base learner if
     * it implements BatchPredictor. Otherwise it simply calls the
     * distributionForInstance() method repeatedly.
     * 
     * @param insts the instances to get predictions for
     * @return an array of probability distributions, one for each instance
     * @throws Exception if a problem occurs
     */
    public double[][] distributionsForInstances(Instances insts) throws Exception {

        if (getClassifier() instanceof BatchPredictor) {
            if (m_ReorderOriginal != null) {
                insts = Filter.useFilter(insts, m_ReorderOriginal);
            }
            Instances filteredInsts = Filter.useFilter(insts, m_Filter);
            if (filteredInsts.numInstances() != insts.numInstances()) {
                throw new WekaException(
                        "FilteredClassifier: filter has returned more/less instances than required.");
            }
            if (m_ReorderOriginal != null) {
                filteredInsts = Filter.useFilter(filteredInsts, m_ReorderFiltered);
            }
            return ((BatchPredictor) getClassifier()).distributionsForInstances(filteredInsts);
        } else {
            double[][] result = new double[insts.numInstances()][insts.numClasses()];
            for (int i = 0; i < insts.numInstances(); i++) {
                result[i] = distributionForInstance(insts.instance(i));
            }
            return result;
        }
    }

    /**
     * Returns true if the base classifier implements BatchPredictor and is able
     * to generate batch predictions efficiently
     * 
     * @return true if the base classifier can generate batch predictions
     *         efficiently
     */
    public boolean implementsMoreEfficientBatchPrediction() {
        if (!(getClassifier() instanceof BatchPredictor)) {
            return super.implementsMoreEfficientBatchPrediction();
        }

        return ((BatchPredictor) getClassifier()).implementsMoreEfficientBatchPrediction();
    }

    /**
     * Output a representation of this classifier
     * 
     * @return a representation of this classifier
     */
    public String toString() {

        if (m_FilteredInstances == null) {
            return "FilteredClassifier: No model built yet.";
        }

        String result = "FilteredClassifier using " + getClassifierSpec() + " on data filtered through "
                + getFilterSpec() + "\n\nFiltered Header\n" + m_FilteredInstances.toString()
                + "\n\nClassifier Model\n" + m_Classifier.toString();
        return result;
    }

    /**
     * Returns the revision string.
     * 
     * @return the revision
     */
    public String getRevision() {
        return RevisionUtils.extract("$Revision$");
    }

    /**
     * Main method for testing this class.
     *
     * @param argv should contain the following arguments: -t training file [-T
     *          test file] [-c class index]
     */
    public static void main(String[] argv) {
        runClassifier(new FilteredClassifier(), argv);
    }
}