Java tutorial
/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* * J48.java * Copyright (C) 1999 University of Waikato, Hamilton, New Zealand * */ package library; import weka.classifiers.Classifier; import weka.classifiers.Sourcable; import weka.classifiers.trees.j48.BinC45ModelSelection; import weka.classifiers.trees.j48.C45ModelSelection; import weka.classifiers.trees.j48.C45PruneableClassifierTree; import weka.classifiers.trees.j48.ClassifierTree; import weka.classifiers.trees.j48.ModelSelection; import weka.classifiers.trees.j48.PruneableClassifierTree; import weka.core.AdditionalMeasureProducer; import weka.core.Capabilities; import weka.core.Drawable; import weka.core.Instance; import weka.core.Instances; import weka.core.Matchable; import weka.core.Option; import weka.core.OptionHandler; import weka.core.RevisionUtils; import weka.core.Summarizable; import weka.core.TechnicalInformation; import weka.core.TechnicalInformationHandler; import weka.core.Utils; import weka.core.WeightedInstancesHandler; import weka.core.TechnicalInformation.Field; import weka.core.TechnicalInformation.Type; import java.util.Enumeration; import java.util.Vector; /** <!-- globalinfo-start --> * Class for generating a pruned or unpruned C4.5 decision tree. For more information, see<br/> * <br/> * Ross Quinlan (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San Mateo, CA. * <p/> <!-- globalinfo-end --> * <!-- technical-bibtex-start --> * BibTeX: * <pre> * @book{Quinlan1993, * address = {San Mateo, CA}, * author = {Ross Quinlan}, * publisher = {Morgan Kaufmann Publishers}, * title = {C4.5: Programs for Machine Learning}, * year = {1993} * } * </pre> * <p/> <!-- technical-bibtex-end --> * <!-- options-start --> * Valid options are: <p/> * * <pre> -U * Use unpruned tree.</pre> * * <pre> -C <pruning confidence> * Set confidence threshold for pruning. * (default 0.25)</pre> * * <pre> -M <minimum number of instances> * Set minimum number of instances per leaf. * (default 2)</pre> * * <pre> -R * Use reduced error pruning.</pre> * * <pre> -N <number of folds> * Set number of folds for reduced error * pruning. One fold is used as pruning set. * (default 3)</pre> * * <pre> -B * Use binary splits only.</pre> * * <pre> -S * Don't perform subtree raising.</pre> * * <pre> -L * Do not clean up after the tree has been built.</pre> * * <pre> -A * Laplace smoothing for predicted probabilities.</pre> * * <pre> -Q <seed> * Seed for random data shuffling (default 1).</pre> * <!-- options-end --> * * @author Eibe Frank (eibe@cs.waikato.ac.nz) * @version $Revision: 1.9 $ */ public class MikeJ48 extends Classifier implements OptionHandler, Drawable, Matchable, Sourcable, WeightedInstancesHandler, Summarizable, AdditionalMeasureProducer, TechnicalInformationHandler { /** for serialization */ static final long serialVersionUID = -217733168393644444L; /** The decision tree */ protected ClassifierTree m_root; /** Unpruned tree? */ protected boolean m_unpruned = false; /** Confidence level */ protected float m_CF = 0.25f; /** Minimum number of instances */ protected int m_minNumObj = 2; /** Determines whether probabilities are smoothed using Laplace correction when predictions are generated */ protected boolean m_useLaplace = false; /** Use reduced error pruning? */ protected boolean m_reducedErrorPruning = false; /** Number of folds for reduced error pruning. */ protected int m_numFolds = 3; /** Binary splits on nominal attributes? */ protected boolean m_binarySplits = false; /** Subtree raising to be performed? */ protected boolean m_subtreeRaising = true; /** Cleanup after the tree has been built. */ protected boolean m_noCleanup = false; /** Random number seed for reduced-error pruning. */ protected int m_Seed = 1; /** * Returns a string describing classifier * @return a description suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "Class for generating a pruned or unpruned C4.5 decision tree. For more " + "information, see\n\n" + getTechnicalInformation().toString(); } /** * Returns an instance of a TechnicalInformation object, containing * detailed information about the technical background of this class, * e.g., paper reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; result = new TechnicalInformation(Type.BOOK); result.setValue(Field.AUTHOR, "Ross Quinlan"); result.setValue(Field.YEAR, "1993"); result.setValue(Field.TITLE, "C4.5: Programs for Machine Learning"); result.setValue(Field.PUBLISHER, "Morgan Kaufmann Publishers"); result.setValue(Field.ADDRESS, "San Mateo, CA"); return result; } /** * Returns default capabilities of the classifier. * * @return the capabilities of this classifier */ public Capabilities getCapabilities() { Capabilities result; try { if (!m_reducedErrorPruning) result = new MikeC45PruneableClassifierTree(null, !m_unpruned, m_CF, m_subtreeRaising, !m_noCleanup) .getCapabilities(); else result = new PruneableClassifierTree(null, !m_unpruned, m_numFolds, !m_noCleanup, m_Seed) .getCapabilities(); } catch (Exception e) { result = new Capabilities(this); } result.setOwner(this); return result; } /** * Generates the classifier. * * @param instances the data to train the classifier with * @throws Exception if classifier can't be built successfully */ public void buildClassifier(Instances instances) throws Exception { ModelSelection modSelection; if (m_binarySplits) modSelection = new BinC45ModelSelection(m_minNumObj, instances); else modSelection = new C45ModelSelection(m_minNumObj, instances); if (!m_reducedErrorPruning) m_root = new MikeC45PruneableClassifierTree(modSelection, !m_unpruned, m_CF, m_subtreeRaising, !m_noCleanup); else m_root = new PruneableClassifierTree(modSelection, !m_unpruned, m_numFolds, !m_noCleanup, m_Seed); m_root.buildClassifier(instances); if (m_binarySplits) { ((BinC45ModelSelection) modSelection).cleanup(); } else { ((C45ModelSelection) modSelection).cleanup(); } } /** * Classifies an instance. * * @param instance the instance to classify * @return the classification for the instance * @throws Exception if instance can't be classified successfully */ public double classifyInstance(Instance instance) throws Exception { System.out.println("MikeJ48"); return m_root.classifyInstance(instance); } /** * Returns class probabilities for an instance. * * @param instance the instance to calculate the class probabilities for * @return the class probabilities * @throws Exception if distribution can't be computed successfully */ public final double[] distributionForInstance(Instance instance) throws Exception { return m_root.distributionForInstance(instance, m_useLaplace); } /** * Returns the type of graph this classifier * represents. * @return Drawable.TREE */ public int graphType() { return Drawable.TREE; } /** * Returns graph describing the tree. * * @return the graph describing the tree * @throws Exception if graph can't be computed */ public String graph() throws Exception { return m_root.graph(); } /** * Returns tree in prefix order. * * @return the tree in prefix order * @throws Exception if something goes wrong */ public String prefix() throws Exception { return m_root.prefix(); } /** * Returns tree as an if-then statement. * * @param className the name of the Java class * @return the tree as a Java if-then type statement * @throws Exception if something goes wrong */ public String toSource(String className) throws Exception { StringBuffer[] source = m_root.toSource(className); return "class " + className + " {\n\n" + " public static double classify(Object[] i)\n" + " throws Exception {\n\n" + " double p = Double.NaN;\n" + source[0] // Assignment code + " return p;\n" + " }\n" + source[1] // Support code + "}\n"; } /** * Returns an enumeration describing the available options. * * Valid options are: <p> * * -U <br> * Use unpruned tree.<p> * * -C confidence <br> * Set confidence threshold for pruning. (Default: 0.25) <p> * * -M number <br> * Set minimum number of instances per leaf. (Default: 2) <p> * * -R <br> * Use reduced error pruning. No subtree raising is performed. <p> * * -N number <br> * Set number of folds for reduced error pruning. One fold is * used as the pruning set. (Default: 3) <p> * * -B <br> * Use binary splits for nominal attributes. <p> * * -S <br> * Don't perform subtree raising. <p> * * -L <br> * Do not clean up after the tree has been built. * * -A <br> * If set, Laplace smoothing is used for predicted probabilites. <p> * * -Q <br> * The seed for reduced-error pruning. <p> * * @return an enumeration of all the available options. */ public Enumeration listOptions() { Vector newVector = new Vector(9); newVector.addElement(new Option("\tUse unpruned tree.", "U", 0, "-U")); newVector.addElement(new Option("\tSet confidence threshold for pruning.\n" + "\t(default 0.25)", "C", 1, "-C <pruning confidence>")); newVector.addElement(new Option("\tSet minimum number of instances per leaf.\n" + "\t(default 2)", "M", 1, "-M <minimum number of instances>")); newVector.addElement(new Option("\tUse reduced error pruning.", "R", 0, "-R")); newVector .addElement(new Option( "\tSet number of folds for reduced error\n" + "\tpruning. One fold is used as pruning set.\n" + "\t(default 3)", "N", 1, "-N <number of folds>")); newVector.addElement(new Option("\tUse binary splits only.", "B", 0, "-B")); newVector.addElement(new Option("\tDon't perform subtree raising.", "S", 0, "-S")); newVector.addElement(new Option("\tDo not clean up after the tree has been built.", "L", 0, "-L")); newVector.addElement(new Option("\tLaplace smoothing for predicted probabilities.", "A", 0, "-A")); newVector.addElement(new Option("\tSeed for random data shuffling (default 1).", "Q", 1, "-Q <seed>")); return newVector.elements(); } /** * Parses a given list of options. * <!-- options-start --> * Valid options are: <p/> * * <pre> -U * Use unpruned tree.</pre> * * <pre> -C <pruning confidence> * Set confidence threshold for pruning. * (default 0.25)</pre> * * <pre> -M <minimum number of instances> * Set minimum number of instances per leaf. * (default 2)</pre> * * <pre> -R * Use reduced error pruning.</pre> * * <pre> -N <number of folds> * Set number of folds for reduced error * pruning. One fold is used as pruning set. * (default 3)</pre> * * <pre> -B * Use binary splits only.</pre> * * <pre> -S * Don't perform subtree raising.</pre> * * <pre> -L * Do not clean up after the tree has been built.</pre> * * <pre> -A * Laplace smoothing for predicted probabilities.</pre> * * <pre> -Q <seed> * Seed for random data shuffling (default 1).</pre> * <!-- options-end --> * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { // Other options String minNumString = Utils.getOption('M', options); if (minNumString.length() != 0) { m_minNumObj = Integer.parseInt(minNumString); } else { m_minNumObj = 2; } m_binarySplits = Utils.getFlag('B', options); m_useLaplace = Utils.getFlag('A', options); // Pruning options m_unpruned = Utils.getFlag('U', options); m_subtreeRaising = !Utils.getFlag('S', options); m_noCleanup = Utils.getFlag('L', options); if ((m_unpruned) && (!m_subtreeRaising)) { throw new Exception("Subtree raising doesn't need to be unset for unpruned tree!"); } m_reducedErrorPruning = Utils.getFlag('R', options); if ((m_unpruned) && (m_reducedErrorPruning)) { throw new Exception("Unpruned tree and reduced error pruning can't be selected " + "simultaneously!"); } String confidenceString = Utils.getOption('C', options); if (confidenceString.length() != 0) { if (m_reducedErrorPruning) { throw new Exception("Setting the confidence doesn't make sense " + "for reduced error pruning."); } else if (m_unpruned) { throw new Exception("Doesn't make sense to change confidence for unpruned " + "tree!"); } else { m_CF = (new Float(confidenceString)).floatValue(); if ((m_CF <= 0) || (m_CF >= 1)) { throw new Exception("Confidence has to be greater than zero and smaller " + "than one!"); } } } else { m_CF = 0.25f; } String numFoldsString = Utils.getOption('N', options); if (numFoldsString.length() != 0) { if (!m_reducedErrorPruning) { throw new Exception("Setting the number of folds" + " doesn't make sense if" + " reduced error pruning is not selected."); } else { m_numFolds = Integer.parseInt(numFoldsString); } } else { m_numFolds = 3; } String seedString = Utils.getOption('Q', options); if (seedString.length() != 0) { m_Seed = Integer.parseInt(seedString); } else { m_Seed = 1; } } /** * Gets the current settings of the Classifier. * * @return an array of strings suitable for passing to setOptions */ public String[] getOptions() { String[] options = new String[14]; int current = 0; if (m_noCleanup) { options[current++] = "-L"; } if (m_unpruned) { options[current++] = "-U"; } else { if (!m_subtreeRaising) { options[current++] = "-S"; } if (m_reducedErrorPruning) { options[current++] = "-R"; options[current++] = "-N"; options[current++] = "" + m_numFolds; options[current++] = "-Q"; options[current++] = "" + m_Seed; } else { options[current++] = "-C"; options[current++] = "" + m_CF; } } if (m_binarySplits) { options[current++] = "-B"; } options[current++] = "-M"; options[current++] = "" + m_minNumObj; if (m_useLaplace) { options[current++] = "-A"; } while (current < options.length) { options[current++] = ""; } return options; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String seedTipText() { return "The seed used for randomizing the data " + "when reduced-error pruning is used."; } /** * Get the value of Seed. * * @return Value of Seed. */ public int getSeed() { return m_Seed; } /** * Set the value of Seed. * * @param newSeed Value to assign to Seed. */ public void setSeed(int newSeed) { m_Seed = newSeed; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String useLaplaceTipText() { return "Whether counts at leaves are smoothed based on Laplace."; } /** * Get the value of useLaplace. * * @return Value of useLaplace. */ public boolean getUseLaplace() { return m_useLaplace; } /** * Set the value of useLaplace. * * @param newuseLaplace Value to assign to useLaplace. */ public void setUseLaplace(boolean newuseLaplace) { m_useLaplace = newuseLaplace; } /** * Returns a description of the classifier. * * @return a description of the classifier */ public String toString() { if (m_root == null) { return "No classifier built"; } if (m_unpruned) return "J48 unpruned tree\n------------------\n" + m_root.toString(); else return "J48 pruned tree\n------------------\n" + m_root.toString(); } /** * Returns a superconcise version of the model * * @return a summary of the model */ public String toSummaryString() { return "Number of leaves: " + m_root.numLeaves() + "\n" + "Size of the tree: " + m_root.numNodes() + "\n"; } /** * Returns the size of the tree * @return the size of the tree */ public double measureTreeSize() { return m_root.numNodes(); } /** * Returns the number of leaves * @return the number of leaves */ public double measureNumLeaves() { return m_root.numLeaves(); } /** * Returns the number of rules (same as number of leaves) * @return the number of rules */ public double measureNumRules() { return m_root.numLeaves(); } /** * Returns an enumeration of the additional measure names * @return an enumeration of the measure names */ public Enumeration enumerateMeasures() { Vector newVector = new Vector(3); newVector.addElement("measureTreeSize"); newVector.addElement("measureNumLeaves"); newVector.addElement("measureNumRules"); return newVector.elements(); } /** * Returns the value of the named measure * @param additionalMeasureName the name of the measure to query for its value * @return the value of the named measure * @throws IllegalArgumentException if the named measure is not supported */ public double getMeasure(String additionalMeasureName) { if (additionalMeasureName.compareToIgnoreCase("measureNumRules") == 0) { return measureNumRules(); } else if (additionalMeasureName.compareToIgnoreCase("measureTreeSize") == 0) { return measureTreeSize(); } else if (additionalMeasureName.compareToIgnoreCase("measureNumLeaves") == 0) { return measureNumLeaves(); } else { throw new IllegalArgumentException(additionalMeasureName + " not supported (j48)"); } } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String unprunedTipText() { return "Whether pruning is performed."; } /** * Get the value of unpruned. * * @return Value of unpruned. */ public boolean getUnpruned() { return m_unpruned; } /** * Set the value of unpruned. Turns reduced-error pruning * off if set. * @param v Value to assign to unpruned. */ public void setUnpruned(boolean v) { if (v) { m_reducedErrorPruning = false; } m_unpruned = v; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String confidenceFactorTipText() { return "The confidence factor used for pruning (smaller values incur " + "more pruning)."; } /** * Get the value of CF. * * @return Value of CF. */ public float getConfidenceFactor() { return m_CF; } /** * Set the value of CF. * * @param v Value to assign to CF. */ public void setConfidenceFactor(float v) { m_CF = v; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String minNumObjTipText() { return "The minimum number of instances per leaf."; } /** * Get the value of minNumObj. * * @return Value of minNumObj. */ public int getMinNumObj() { return m_minNumObj; } /** * Set the value of minNumObj. * * @param v Value to assign to minNumObj. */ public void setMinNumObj(int v) { m_minNumObj = v; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String reducedErrorPruningTipText() { return "Whether reduced-error pruning is used instead of C.4.5 pruning."; } /** * Get the value of reducedErrorPruning. * * @return Value of reducedErrorPruning. */ public boolean getReducedErrorPruning() { return m_reducedErrorPruning; } /** * Set the value of reducedErrorPruning. Turns * unpruned trees off if set. * * @param v Value to assign to reducedErrorPruning. */ public void setReducedErrorPruning(boolean v) { if (v) { m_unpruned = false; } m_reducedErrorPruning = v; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String numFoldsTipText() { return "Determines the amount of data used for reduced-error pruning. " + " One fold is used for pruning, the rest for growing the tree."; } /** * Get the value of numFolds. * * @return Value of numFolds. */ public int getNumFolds() { return m_numFolds; } /** * Set the value of numFolds. * * @param v Value to assign to numFolds. */ public void setNumFolds(int v) { m_numFolds = v; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String binarySplitsTipText() { return "Whether to use binary splits on nominal attributes when " + "building the trees."; } /** * Get the value of binarySplits. * * @return Value of binarySplits. */ public boolean getBinarySplits() { return m_binarySplits; } /** * Set the value of binarySplits. * * @param v Value to assign to binarySplits. */ public void setBinarySplits(boolean v) { m_binarySplits = v; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String subtreeRaisingTipText() { return "Whether to consider the subtree raising operation when pruning."; } /** * Get the value of subtreeRaising. * * @return Value of subtreeRaising. */ public boolean getSubtreeRaising() { return m_subtreeRaising; } /** * Set the value of subtreeRaising. * * @param v Value to assign to subtreeRaising. */ public void setSubtreeRaising(boolean v) { m_subtreeRaising = v; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String saveInstanceDataTipText() { return "Whether to save the training data for visualization."; } /** * Check whether instance data is to be saved. * * @return true if instance data is saved */ public boolean getSaveInstanceData() { return m_noCleanup; } /** * Set whether instance data is to be saved. * @param v true if instance data is to be saved */ public void setSaveInstanceData(boolean v) { m_noCleanup = v; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 1.9 $"); } /** * Main method for testing this class * * @param argv the commandline options */ public static void main(String[] argv) { runClassifier(new MikeJ48(), argv); } /** * Returns class probabilities for an instance. * * @param instance the instance to calculate the class probabilities for * @return the class probabilities * @throws Exception if distribution can't be computed successfully */ public final double[] disjunctSize(Instance instance) throws Exception { //System.out.println(m_root.getClass().toString()); if (m_root.getClass() == Class.forName("library.MikeC45PruneableClassifierTree")) { return ((MikeC45PruneableClassifierTree) m_root).getDisjunct(instance); } return m_root.distributionForInstance(instance, false); } }