Java tutorial
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * PruneableClassifierTree.java * Copyright (C) 1999-2012 University of Waikato, Hamilton, New Zealand * */ package weka.classifiers.trees.j48; import java.util.Random; import weka.core.Capabilities; import weka.core.Capabilities.Capability; import weka.core.Instances; import weka.core.RevisionUtils; import weka.core.Utils; /** * Class for handling a tree structure that can * be pruned using a pruning set. * * @author Eibe Frank (eibe@cs.waikato.ac.nz) * @version $Revision$ */ public class PruneableClassifierTree extends ClassifierTree { /** for serialization */ static final long serialVersionUID = -555775736857600201L; /** True if the tree is to be pruned. */ protected boolean pruneTheTree = false; /** How many subsets of equal size? One used for pruning, the rest for training. */ protected int numSets = 3; /** Cleanup after the tree has been built. */ protected boolean m_cleanup = true; /** The random number seed. */ protected int m_seed = 1; /** * Constructor for pruneable tree structure. Stores reference * to associated training data at each node. * * @param toSelectLocModel selection method for local splitting model * @param pruneTree true if the tree is to be pruned * @param num number of subsets of equal size * @param cleanup * @param seed the seed value to use * @throws Exception if something goes wrong */ public PruneableClassifierTree(ModelSelection toSelectLocModel, boolean pruneTree, int num, boolean cleanup, int seed) throws Exception { super(toSelectLocModel); pruneTheTree = pruneTree; numSets = num; m_cleanup = cleanup; m_seed = seed; } /** * Method for building a pruneable classifier tree. * * @param data the data to build the tree from * @throws Exception if tree can't be built successfully */ public void buildClassifier(Instances data) throws Exception { // remove instances with missing class data = new Instances(data); data.deleteWithMissingClass(); Random random = new Random(m_seed); data.stratify(numSets); buildTree(data.trainCV(numSets, numSets - 1, random), data.testCV(numSets, numSets - 1), !m_cleanup); if (pruneTheTree) { prune(); } if (m_cleanup) { cleanup(new Instances(data, 0)); } } /** * Prunes a tree. * * @throws Exception if tree can't be pruned successfully */ public void prune() throws Exception { if (!m_isLeaf) { // Prune all subtrees. for (int i = 0; i < m_sons.length; i++) son(i).prune(); // Decide if leaf is best choice. if (Utils.smOrEq(errorsForLeaf(), errorsForTree())) { // Free son Trees m_sons = null; m_isLeaf = true; // Get NoSplit Model for node. m_localModel = new NoSplit(localModel().distribution()); } } } /** * Returns a newly created tree. * * @param train the training data * @param test the test data * @return the generated tree * @throws Exception if something goes wrong */ protected ClassifierTree getNewTree(Instances train, Instances test) throws Exception { PruneableClassifierTree newTree = new PruneableClassifierTree(m_toSelectModel, pruneTheTree, numSets, m_cleanup, m_seed); newTree.buildTree(train, test, !m_cleanup); return newTree; } /** * Computes estimated errors for tree. * * @return the estimated errors * @throws Exception if error estimate can't be computed */ private double errorsForTree() throws Exception { double errors = 0; if (m_isLeaf) return errorsForLeaf(); else { for (int i = 0; i < m_sons.length; i++) if (Utils.eq(localModel().distribution().perBag(i), 0)) { errors += m_test.perBag(i) - m_test.perClassPerBag(i, localModel().distribution().maxClass()); } else errors += son(i).errorsForTree(); return errors; } } /** * Computes estimated errors for leaf. * * @return the estimated errors * @throws Exception if error estimate can't be computed */ private double errorsForLeaf() throws Exception { return m_test.total() - m_test.perClass(localModel().distribution().maxClass()); } /** * Method just exists to make program easier to read. */ private ClassifierSplitModel localModel() { return (ClassifierSplitModel) m_localModel; } /** * Method just exists to make program easier to read. */ private PruneableClassifierTree son(int index) { return (PruneableClassifierTree) m_sons[index]; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision$"); } }