Java tutorial
/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* * ReliefFAttributeEval.java * Copyright (C) 1999 University of Waikato, Hamilton, New Zealand * */ package FeatureSelection; import weka.attributeSelection.ASEvaluation; import weka.attributeSelection.AttributeEvaluator; import weka.core.Attribute; import weka.core.Capabilities; import weka.core.FastVector; import weka.core.Instance; import weka.core.Instances; import weka.core.Option; import weka.core.OptionHandler; import weka.core.RevisionUtils; import weka.core.TechnicalInformation; import weka.core.TechnicalInformationHandler; import weka.core.Utils; import weka.core.Capabilities.Capability; import weka.core.TechnicalInformation.Field; import weka.core.TechnicalInformation.Type; import java.util.ArrayList; import java.util.Collections; import java.util.Enumeration; import java.util.Random; import java.util.Vector; import Utilities.CollectionUtilities; /** * <!-- globalinfo-start --> ReliefFAttributeEval :<br/> * <br/> * Evaluates the worth of an attribute by repeatedly sampling an instance and * considering the value of the given attribute for the nearest instance of the * same and different class. Can operate on both discrete and continuous class * data.<br/> * <br/> * For more information see:<br/> * <br/> * Kenji Kira, Larry A. Rendell: A Practical Approach to Feature Selection. In: * Ninth International Workshop on Machine Learning, 249-256, 1992.<br/> * <br/> * Igor Kononenko: Estimating Attributes: Analysis and Extensions of RELIEF. In: * European Conference on Machine Learning, 171-182, 1994.<br/> * <br/> * Marko Robnik-Sikonja, Igor Kononenko: An adaptation of Relief for attribute * estimation in regression. In: Fourteenth International Conference on Machine * Learning, 296-304, 1997. * <p/> * <!-- globalinfo-end --> * * <!-- technical-bibtex-start --> BibTeX: * * <pre> * @inproceedings{Kira1992, * author = {Kenji Kira and Larry A. Rendell}, * booktitle = {Ninth International Workshop on Machine Learning}, * editor = {Derek H. Sleeman and Peter Edwards}, * pages = {249-256}, * publisher = {Morgan Kaufmann}, * title = {A Practical Approach to Feature Selection}, * year = {1992} * } * * @inproceedings{Kononenko1994, * author = {Igor Kononenko}, * booktitle = {European Conference on Machine Learning}, * editor = {Francesco Bergadano and Luc De Raedt}, * pages = {171-182}, * publisher = {Springer}, * title = {Estimating Attributes: Analysis and Extensions of RELIEF}, * year = {1994} * } * * @inproceedings{Robnik-Sikonja1997, * author = {Marko Robnik-Sikonja and Igor Kononenko}, * booktitle = {Fourteenth International Conference on Machine Learning}, * editor = {Douglas H. Fisher}, * pages = {296-304}, * publisher = {Morgan Kaufmann}, * title = {An adaptation of Relief for attribute estimation in regression}, * year = {1997} * } * </pre> * <p/> * <!-- technical-bibtex-end --> * * <!-- options-start --> Valid options are: * <p/> * * <pre> * -M <num instances> * Specify the number of instances to * sample when estimating attributes. * If not specified, then all instances * will be used. * </pre> * * <pre> * -D <seed> * Seed for randomly sampling instances. * (Default = 1) * </pre> * * <pre> * -K <number of neighbours> * Number of nearest neighbours (k) used * to estimate attribute relevances * (Default = 10). * </pre> * * <pre> * -W * Weight nearest neighbours by distance * </pre> * * <pre> * -A <num> * Specify sigma value (used in an exp * function to control how quickly * weights for more distant instances * decrease. Use in conjunction with -W. * Sensible value=1/5 to 1/10 of the * number of nearest neighbours. * (Default = 2) * </pre> * * <!-- options-end --> * * @author Mark Hall (mhall@cs.waikato.ac.nz) * @version $Revision: 5511 $ */ public class ReliefFAttributeEval extends ASEvaluation implements AttributeEvaluator, OptionHandler, TechnicalInformationHandler { /** for serialization */ static final long serialVersionUID = -8422186665795839379L; /** The training instances */ private Instances m_trainInstances; /** The class index */ private int m_classIndex; /** The number of attributes */ private int m_numAttribs; /** The number of instances */ private int m_numInstances; /** Numeric class */ private boolean m_numericClass; /** The number of classes if class is nominal */ private int m_numClasses; /** * Used to hold the probability of a different class val given nearest * instances (numeric class) */ private double m_ndc; /** * Used to hold the prob of different value of an attribute given nearest * instances (numeric class case) */ private double[] m_nda; /** * Used to hold the prob of a different class val and different att val * given nearest instances (numeric class case) */ private double[] m_ndcda; /** Holds the weights that relief assigns to attributes */ private double[] m_weights; /** Prior class probabilities (discrete class case) */ private double[] m_classProbs; /** * The number of instances to sample when estimating attributes default == * -1, use all instances */ private int m_sampleM; /** The number of nearest hits/misses */ private int m_Knn; /** k nearest scores + instance indexes for n classes */ private double[][][] m_karray; /** Upper bound for numeric attributes */ private double[] m_maxArray; /** Lower bound for numeric attributes */ private double[] m_minArray; /** Keep track of the farthest instance for each class */ private double[] m_worst; /** Index in the m_karray of the farthest instance for each class */ private int[] m_index; /** Number of nearest neighbours stored of each class */ private int[] m_stored; /** Random number seed used for sampling instances */ private int m_seed; /** * used to (optionally) weight nearest neighbours by their distance from the * instance in question. Each entry holds exp(-((rank(r_i, i_j)/sigma)^2)) * where rank(r_i,i_j) is the rank of instance i_j in a sequence of * instances ordered by the distance from r_i. sigma is a user defined * parameter, default=20 **/ private double[] m_weightsByRank; private int m_sigma; /** Weight by distance rather than equal weights */ private boolean m_weightByDistance; private ArrayList<Double> weights_arr = new ArrayList<Double>(); private ArrayList<Double> weights_store; private ArrayList<Integer> indexes = new ArrayList<Integer>(); private String[] featureNames_Arr; /** * Constructor */ public ReliefFAttributeEval() { resetOptions(); } /** * Returns a string describing this attribute evaluator * * @return a description of the evaluator suitable for displaying in the * explorer/experimenter gui */ public String globalInfo() { return "ReliefFAttributeEval :\n\nEvaluates the worth of an attribute by " + "repeatedly sampling an instance and considering the value of the " + "given attribute for the nearest instance of the same and different " + "class. Can operate on both discrete and continuous class data.\n\n" + "For more information see:\n\n" + getTechnicalInformation().toString(); } /** * Returns an instance of a TechnicalInformation object, containing detailed * information about the technical background of this class, e.g., paper * reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; TechnicalInformation additional; result = new TechnicalInformation(Type.INPROCEEDINGS); result.setValue(Field.AUTHOR, "Kenji Kira and Larry A. Rendell"); result.setValue(Field.TITLE, "A Practical Approach to Feature Selection"); result.setValue(Field.BOOKTITLE, "Ninth International Workshop on Machine Learning"); result.setValue(Field.EDITOR, "Derek H. Sleeman and Peter Edwards"); result.setValue(Field.YEAR, "1992"); result.setValue(Field.PAGES, "249-256"); result.setValue(Field.PUBLISHER, "Morgan Kaufmann"); additional = result.add(Type.INPROCEEDINGS); additional.setValue(Field.AUTHOR, "Igor Kononenko"); additional.setValue(Field.TITLE, "Estimating Attributes: Analysis and Extensions of RELIEF"); additional.setValue(Field.BOOKTITLE, "European Conference on Machine Learning"); additional.setValue(Field.EDITOR, "Francesco Bergadano and Luc De Raedt"); additional.setValue(Field.YEAR, "1994"); additional.setValue(Field.PAGES, "171-182"); additional.setValue(Field.PUBLISHER, "Springer"); additional = result.add(Type.INPROCEEDINGS); additional.setValue(Field.AUTHOR, "Marko Robnik-Sikonja and Igor Kononenko"); additional.setValue(Field.TITLE, "An adaptation of Relief for attribute estimation in regression"); additional.setValue(Field.BOOKTITLE, "Fourteenth International Conference on Machine Learning"); additional.setValue(Field.EDITOR, "Douglas H. Fisher"); additional.setValue(Field.YEAR, "1997"); additional.setValue(Field.PAGES, "296-304"); additional.setValue(Field.PUBLISHER, "Morgan Kaufmann"); return result; } /** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. **/ public Enumeration listOptions() { Vector newVector = new Vector(4); newVector.addElement(new Option( "\tSpecify the number of instances to\n" + "\tsample when estimating attributes.\n" + "\tIf not specified, then all instances\n" + "\twill be used.", "M", 1, "-M <num instances>")); newVector.addElement( new Option("\tSeed for randomly sampling instances.\n" + "\t(Default = 1)", "D", 1, "-D <seed>")); newVector.addElement( new Option("\tNumber of nearest neighbours (k) used\n" + "\tto estimate attribute relevances\n" + "\t(Default = 10).", "K", 1, "-K <number of neighbours>")); newVector.addElement(new Option("\tWeight nearest neighbours by distance", "W", 0, "-W")); newVector.addElement(new Option("\tSpecify sigma value (used in an exp\n" + "\tfunction to control how quickly\n" + "\tweights for more distant instances\n" + "\tdecrease. Use in conjunction with -W.\n" + "\tSensible value=1/5 to 1/10 of the\n" + "\tnumber of nearest neighbours.\n" + "\t(Default = 2)", "A", 1, "-A <num>")); return newVector.elements(); } /** * Parses a given list of options. * <p/> * * <!-- options-start --> Valid options are: * <p/> * * <pre> * -M <num instances> * Specify the number of instances to * sample when estimating attributes. * If not specified, then all instances * will be used. * </pre> * * <pre> * -D <seed> * Seed for randomly sampling instances. * (Default = 1) * </pre> * * <pre> * -K <number of neighbours> * Number of nearest neighbours (k) used * to estimate attribute relevances * (Default = 10). * </pre> * * <pre> * -W * Weight nearest neighbours by distance * </pre> * * <pre> * -A <num> * Specify sigma value (used in an exp * function to control how quickly * weights for more distant instances * decrease. Use in conjunction with -W. * Sensible value=1/5 to 1/10 of the * number of nearest neighbours. * (Default = 2) * </pre> * * <!-- options-end --> * * @param options * the list of options as an array of strings * @throws Exception * if an option is not supported */ public void setOptions(String[] options) throws Exception { String optionString; resetOptions(); setWeightByDistance(Utils.getFlag('W', options)); optionString = Utils.getOption('M', options); if (optionString.length() != 0) { setSampleSize(Integer.parseInt(optionString)); } optionString = Utils.getOption('D', options); if (optionString.length() != 0) { setSeed(Integer.parseInt(optionString)); } optionString = Utils.getOption('K', options); if (optionString.length() != 0) { setNumNeighbours(Integer.parseInt(optionString)); } optionString = Utils.getOption('A', options); if (optionString.length() != 0) { setWeightByDistance(true); // turn on weighting by distance setSigma(Integer.parseInt(optionString)); } } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String sigmaTipText() { return "Set influence of nearest neighbours. Used in an exp function to " + "control how quickly weights decrease for more distant instances. " + "Use in conjunction with weightByDistance. Sensible values = 1/5 to " + "1/10 the number of nearest neighbours."; } /** * Sets the sigma value. * * @param s * the value of sigma (> 0) * @throws Exception * if s is not positive */ public void setSigma(int s) throws Exception { if (s <= 0) { throw new Exception("value of sigma must be > 0!"); } m_sigma = s; } /** * Get the value of sigma. * * @return the sigma value. */ public int getSigma() { return m_sigma; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String numNeighboursTipText() { return "Number of nearest neighbours for attribute estimation."; } /** * Set the number of nearest neighbours * * @param n * the number of nearest neighbours. */ public void setNumNeighbours(int n) { m_Knn = n; } /** * Get the number of nearest neighbours * * @return the number of nearest neighbours */ public int getNumNeighbours() { return m_Knn; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String seedTipText() { return "Random seed for sampling instances."; } /** * Set the random number seed for randomly sampling instances. * * @param s * the random number seed. */ public void setSeed(int s) { m_seed = s; } /** * Get the seed used for randomly sampling instances. * * @return the random number seed. */ public int getSeed() { return m_seed; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String sampleSizeTipText() { return "Number of instances to sample. Default (-1) indicates that all " + "instances will be used for attribute estimation."; } /** * Set the number of instances to sample for attribute estimation * * @param s * the number of instances to sample. */ public void setSampleSize(int s) { m_sampleM = s; } /** * Get the number of instances used for estimating attributes * * @return the number of instances. */ public int getSampleSize() { return m_sampleM; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String weightByDistanceTipText() { return "Weight nearest neighbours by their distance."; } /** * Set the nearest neighbour weighting method * * @param b * true nearest neighbours are to be weighted by distance. */ public void setWeightByDistance(boolean b) { m_weightByDistance = b; } /** * Get whether nearest neighbours are being weighted by distance * * @return m_weightByDiffernce */ public boolean getWeightByDistance() { return m_weightByDistance; } /** * Gets the current settings of ReliefFAttributeEval. * * @return an array of strings suitable for passing to setOptions() */ public String[] getOptions() { String[] options = new String[9]; int current = 0; if (getWeightByDistance()) { options[current++] = "-W"; } options[current++] = "-M"; options[current++] = "" + getSampleSize(); options[current++] = "-D"; options[current++] = "" + getSeed(); options[current++] = "-K"; options[current++] = "" + getNumNeighbours(); if (getWeightByDistance()) { options[current++] = "-A"; options[current++] = "" + getSigma(); } while (current < options.length) { options[current++] = ""; } return options; } /** * Return a description of the ReliefF attribute evaluator. * * @return a description of the evaluator as a String. */ public String toString() { StringBuffer text = new StringBuffer(); if (m_trainInstances == null) { text.append("ReliefF feature evaluator has not been built yet\n"); } else { text.append("\tReliefF Ranking Filter"); text.append("\n\tInstances sampled: "); if (m_sampleM == -1) { text.append("all\n"); } else { text.append(m_sampleM + "\n"); } text.append("\tNumber of nearest neighbours (k): " + m_Knn + "\n"); if (m_weightByDistance) { text.append("\tExponentially decreasing (with distance) " + "influence for\n" + "\tnearest neighbours. Sigma: " + m_sigma + "\n"); } else { text.append("\tEqual influence nearest neighbours\n"); } } return text.toString(); } /** * Returns the capabilities of this evaluator. * * @return the capabilities of this evaluator * @see Capabilities */ public Capabilities getCapabilities() { Capabilities result = super.getCapabilities(); result.disableAll(); // attributes result.enable(Capability.NOMINAL_ATTRIBUTES); result.enable(Capability.NUMERIC_ATTRIBUTES); result.enable(Capability.DATE_ATTRIBUTES); result.enable(Capability.MISSING_VALUES); // class result.enable(Capability.NOMINAL_CLASS); result.enable(Capability.NUMERIC_CLASS); result.enable(Capability.DATE_CLASS); result.enable(Capability.MISSING_CLASS_VALUES); return result; } /** * Initializes a ReliefF attribute evaluator. * * @param data * set of instances serving as training data * @throws Exception * if the evaluator has not been generated successfully */ public void buildEvaluator(Instances data) throws Exception { int z, totalInstances; Random r = new Random(m_seed); // can evaluator handle data? getCapabilities().testWithFail(data); m_trainInstances = new Instances(data); m_classIndex = m_trainInstances.classIndex(); m_numAttribs = m_trainInstances.numAttributes(); m_numInstances = m_trainInstances.numInstances(); if (m_trainInstances.attribute(m_classIndex).isNumeric()) { m_numericClass = true; } else { m_numericClass = false; } if (!m_numericClass) { m_numClasses = m_trainInstances.attribute(m_classIndex).numValues(); } else { m_ndc = 0; m_numClasses = 1; m_nda = new double[m_numAttribs]; m_ndcda = new double[m_numAttribs]; } if (m_weightByDistance) // set up the rank based weights { m_weightsByRank = new double[m_Knn]; for (int i = 0; i < m_Knn; i++) { m_weightsByRank[i] = Math.exp(-((i / (double) m_sigma) * (i / (double) m_sigma))); } } // the final attribute weights m_weights = new double[m_numAttribs]; // num classes (1 for numeric class) knn neighbours, // and 0 = distance, 1 = instance index m_karray = new double[m_numClasses][m_Knn][2]; if (!m_numericClass) { m_classProbs = new double[m_numClasses]; for (int i = 0; i < m_numInstances; i++) { m_classProbs[(int) m_trainInstances.instance(i).value(m_classIndex)]++; } for (int i = 0; i < m_numClasses; i++) { m_classProbs[i] /= m_numInstances; } } m_worst = new double[m_numClasses]; m_index = new int[m_numClasses]; m_stored = new int[m_numClasses]; m_minArray = new double[m_numAttribs]; m_maxArray = new double[m_numAttribs]; for (int i = 0; i < m_numAttribs; i++) { m_minArray[i] = m_maxArray[i] = Double.NaN; } for (int i = 0; i < m_numInstances; i++) { updateMinMax(m_trainInstances.instance(i)); } if ((m_sampleM > m_numInstances) || (m_sampleM < 0)) { totalInstances = m_numInstances; } else { totalInstances = m_sampleM; } // process each instance, updating attribute weights for (int i = 0; i < totalInstances; i++) { if (totalInstances == m_numInstances) { z = i; } else { z = r.nextInt() % m_numInstances; } if (z < 0) { z *= -1; } if (!(m_trainInstances.instance(z).isMissing(m_classIndex))) { // first clear the knn and worst index stuff for the classes for (int j = 0; j < m_numClasses; j++) { m_index[j] = m_stored[j] = 0; for (int k = 0; k < m_Knn; k++) { m_karray[j][k][0] = m_karray[j][k][1] = 0; } } findKHitMiss(z); if (m_numericClass) { updateWeightsNumericClass(z); } else { updateWeightsDiscreteClass(z); } } } // now scale weights by 1/m_numInstances (nominal class) or // calculate weights numeric class // System.out.println("num inst:"+m_numInstances+" r_ndc:"+r_ndc); for (int i = 0; i < m_numAttribs; i++) { if (i != m_classIndex) { if (m_numericClass) { m_weights[i] = m_ndcda[i] / m_ndc - ((m_nda[i] - m_ndcda[i]) / ((double) totalInstances - m_ndc)); } else { m_weights[i] *= (1.0 / (double) totalInstances); } } } for (int i = 0; i < m_weights.length - 1; i++) { weights_arr.add(m_weights[i]); } weights_store = new ArrayList<Double>(weights_arr); Collections.sort(weights_arr); Collections.reverse(weights_arr); indexes = new ArrayList<Integer>(); for (int n = 0; n < weights_arr.size(); n++) { indexes.add(weights_store.indexOf(weights_arr.get(n))); } } /** * Evaluates an individual attribute using ReliefF's instance based * approach. The actual work is done by buildEvaluator which evaluates all * features. * * @param attribute * the index of the attribute to be evaluated * @throws Exception * if the attribute could not be evaluated */ public double evaluateAttribute(int attribute) throws Exception { return m_weights[attribute]; } /** * Reset options to their default values */ protected void resetOptions() { m_trainInstances = null; m_sampleM = -1; m_Knn = 10; m_sigma = 2; m_weightByDistance = false; m_seed = 1; } /** * Normalizes a given value of a numeric attribute. * * @param x * the value to be normalized * @param i * the attribute's index * @return the normalized value */ private double norm(double x, int i) { if (Double.isNaN(m_minArray[i]) || Utils.eq(m_maxArray[i], m_minArray[i])) { return 0; } else { return (x - m_minArray[i]) / (m_maxArray[i] - m_minArray[i]); } } /** * Updates the minimum and maximum values for all the attributes based on a * new instance. * * @param instance * the new instance */ private void updateMinMax(Instance instance) { // for (int j = 0; j < m_numAttribs; j++) { try { for (int j = 0; j < instance.numValues(); j++) { if ((instance.attributeSparse(j).isNumeric()) && (!instance.isMissingSparse(j))) { if (Double.isNaN(m_minArray[instance.index(j)])) { m_minArray[instance.index(j)] = instance.valueSparse(j); m_maxArray[instance.index(j)] = instance.valueSparse(j); } else { if (instance.valueSparse(j) < m_minArray[instance.index(j)]) { m_minArray[instance.index(j)] = instance.valueSparse(j); } else { if (instance.valueSparse(j) > m_maxArray[instance.index(j)]) { m_maxArray[instance.index(j)] = instance.valueSparse(j); } } } } } } catch (Exception ex) { System.err.println(ex); ex.printStackTrace(); } } /** * Computes the difference between two given attribute values. */ private double difference(int index, double val1, double val2) { switch (m_trainInstances.attribute(index).type()) { case Attribute.NOMINAL: // If attribute is nominal if (Instance.isMissingValue(val1) || Instance.isMissingValue(val2)) { return (1.0 - (1.0 / ((double) m_trainInstances.attribute(index).numValues()))); } else if ((int) val1 != (int) val2) { return 1; } else { return 0; } case Attribute.NUMERIC: // If attribute is numeric if (Instance.isMissingValue(val1) || Instance.isMissingValue(val2)) { if (Instance.isMissingValue(val1) && Instance.isMissingValue(val2)) { return 1; } else { double diff; if (Instance.isMissingValue(val2)) { diff = norm(val1, index); } else { diff = norm(val2, index); } if (diff < 0.5) { diff = 1.0 - diff; } return diff; } } else { return Math.abs(norm(val1, index) - norm(val2, index)); } default: return 0; } } /** * Calculates the distance between two instances * * @param first * the first instance * @param second * the second instance * @return the distance between the two given instances, between 0 and 1 */ private double distance(Instance first, Instance second) { double distance = 0; int firstI, secondI; for (int p1 = 0, p2 = 0; p1 < first.numValues() || p2 < second.numValues();) { if (p1 >= first.numValues()) { firstI = m_trainInstances.numAttributes(); } else { firstI = first.index(p1); } if (p2 >= second.numValues()) { secondI = m_trainInstances.numAttributes(); } else { secondI = second.index(p2); } if (firstI == m_trainInstances.classIndex()) { p1++; continue; } if (secondI == m_trainInstances.classIndex()) { p2++; continue; } double diff; if (firstI == secondI) { diff = difference(firstI, first.valueSparse(p1), second.valueSparse(p2)); p1++; p2++; } else if (firstI > secondI) { diff = difference(secondI, 0, second.valueSparse(p2)); p2++; } else { diff = difference(firstI, first.valueSparse(p1), 0); p1++; } // distance += diff * diff; distance += diff; } // return Math.sqrt(distance / m_NumAttributesUsed); return distance; } /** * update attribute weights given an instance when the class is numeric * * @param instNum * the index of the instance to use when updating weights */ private void updateWeightsNumericClass(int instNum) { int i, j; double temp, temp2; int[] tempSorted = null; double[] tempDist = null; double distNorm = 1.0; int firstI, secondI; Instance inst = m_trainInstances.instance(instNum); // sort nearest neighbours and set up normalization variable if (m_weightByDistance) { tempDist = new double[m_stored[0]]; for (j = 0, distNorm = 0; j < m_stored[0]; j++) { // copy the distances tempDist[j] = m_karray[0][j][0]; // sum normalizer distNorm += m_weightsByRank[j]; } tempSorted = Utils.sort(tempDist); } for (i = 0; i < m_stored[0]; i++) { // P diff prediction (class) given nearest instances if (m_weightByDistance) { temp = difference(m_classIndex, inst.value(m_classIndex), m_trainInstances.instance((int) m_karray[0][tempSorted[i]][1]).value(m_classIndex)); temp *= (m_weightsByRank[i] / distNorm); } else { temp = difference(m_classIndex, inst.value(m_classIndex), m_trainInstances.instance((int) m_karray[0][i][1]).value(m_classIndex)); temp *= (1.0 / (double) m_stored[0]); // equal influence } m_ndc += temp; Instance cmp; cmp = (m_weightByDistance) ? m_trainInstances.instance((int) m_karray[0][tempSorted[i]][1]) : m_trainInstances.instance((int) m_karray[0][i][1]); double temp_diffP_diffA_givNearest = difference(m_classIndex, inst.value(m_classIndex), cmp.value(m_classIndex)); // now the attributes for (int p1 = 0, p2 = 0; p1 < inst.numValues() || p2 < cmp.numValues();) { if (p1 >= inst.numValues()) { firstI = m_trainInstances.numAttributes(); } else { firstI = inst.index(p1); } if (p2 >= cmp.numValues()) { secondI = m_trainInstances.numAttributes(); } else { secondI = cmp.index(p2); } if (firstI == m_trainInstances.classIndex()) { p1++; continue; } if (secondI == m_trainInstances.classIndex()) { p2++; continue; } temp = 0.0; temp2 = 0.0; if (firstI == secondI) { j = firstI; temp = difference(j, inst.valueSparse(p1), cmp.valueSparse(p2)); p1++; p2++; } else if (firstI > secondI) { j = secondI; temp = difference(j, 0, cmp.valueSparse(p2)); p2++; } else { j = firstI; temp = difference(j, inst.valueSparse(p1), 0); p1++; } temp2 = temp_diffP_diffA_givNearest * temp; // P of different prediction and different att value given // nearest instances if (m_weightByDistance) { temp2 *= (m_weightsByRank[i] / distNorm); } else { temp2 *= (1.0 / (double) m_stored[0]); // equal influence } m_ndcda[j] += temp2; // P of different attribute val given nearest instances if (m_weightByDistance) { temp *= (m_weightsByRank[i] / distNorm); } else { temp *= (1.0 / (double) m_stored[0]); // equal influence } m_nda[j] += temp; } } } /** * update attribute weights given an instance when the class is discrete * * @param instNum * the index of the instance to use when updating weights */ private void updateWeightsDiscreteClass(int instNum) { int i, j, k; int cl; double temp_diff, w_norm = 1.0; double[] tempDistClass; int[] tempSortedClass = null; double distNormClass = 1.0; double[] tempDistAtt; int[][] tempSortedAtt = null; double[] distNormAtt = null; int firstI, secondI; // store the indexes (sparse instances) of non-zero elements Instance inst = m_trainInstances.instance(instNum); // get the class of this instance cl = (int) m_trainInstances.instance(instNum).value(m_classIndex); // sort nearest neighbours and set up normalization variables if (m_weightByDistance) { // do class (hits) first // sort the distances tempDistClass = new double[m_stored[cl]]; for (j = 0, distNormClass = 0; j < m_stored[cl]; j++) { // copy the distances tempDistClass[j] = m_karray[cl][j][0]; // sum normalizer distNormClass += m_weightsByRank[j]; } tempSortedClass = Utils.sort(tempDistClass); // do misses (other classes) tempSortedAtt = new int[m_numClasses][1]; distNormAtt = new double[m_numClasses]; for (k = 0; k < m_numClasses; k++) { if (k != cl) // already done cl { // sort the distances tempDistAtt = new double[m_stored[k]]; for (j = 0, distNormAtt[k] = 0; j < m_stored[k]; j++) { // copy the distances tempDistAtt[j] = m_karray[k][j][0]; // sum normalizer distNormAtt[k] += m_weightsByRank[j]; } tempSortedAtt[k] = Utils.sort(tempDistAtt); } } } if (m_numClasses > 2) { // the amount of probability space left after removing the // probability of this instance's class value w_norm = (1.0 - m_classProbs[cl]); } // do the k nearest hits of the same class for (j = 0, temp_diff = 0.0; j < m_stored[cl]; j++) { Instance cmp; cmp = (m_weightByDistance) ? m_trainInstances.instance((int) m_karray[cl][tempSortedClass[j]][1]) : m_trainInstances.instance((int) m_karray[cl][j][1]); for (int p1 = 0, p2 = 0; p1 < inst.numValues() || p2 < cmp.numValues();) { if (p1 >= inst.numValues()) { firstI = m_trainInstances.numAttributes(); } else { firstI = inst.index(p1); } if (p2 >= cmp.numValues()) { secondI = m_trainInstances.numAttributes(); } else { secondI = cmp.index(p2); } if (firstI == m_trainInstances.classIndex()) { p1++; continue; } if (secondI == m_trainInstances.classIndex()) { p2++; continue; } if (firstI == secondI) { i = firstI; temp_diff = difference(i, inst.valueSparse(p1), cmp.valueSparse(p2)); p1++; p2++; } else if (firstI > secondI) { i = secondI; temp_diff = difference(i, 0, cmp.valueSparse(p2)); p2++; } else { i = firstI; temp_diff = difference(i, inst.valueSparse(p1), 0); p1++; } if (m_weightByDistance) { temp_diff *= (m_weightsByRank[j] / distNormClass); } else { if (m_stored[cl] > 0) { temp_diff /= (double) m_stored[cl]; } } m_weights[i] -= temp_diff; } } // now do k nearest misses from each of the other classes temp_diff = 0.0; for (k = 0; k < m_numClasses; k++) { if (k != cl) // already done cl { for (j = 0; j < m_stored[k]; j++) { Instance cmp; cmp = (m_weightByDistance) ? m_trainInstances.instance((int) m_karray[k][tempSortedAtt[k][j]][1]) : m_trainInstances.instance((int) m_karray[k][j][1]); for (int p1 = 0, p2 = 0; p1 < inst.numValues() || p2 < cmp.numValues();) { if (p1 >= inst.numValues()) { firstI = m_trainInstances.numAttributes(); } else { firstI = inst.index(p1); } if (p2 >= cmp.numValues()) { secondI = m_trainInstances.numAttributes(); } else { secondI = cmp.index(p2); } if (firstI == m_trainInstances.classIndex()) { p1++; continue; } if (secondI == m_trainInstances.classIndex()) { p2++; continue; } if (firstI == secondI) { i = firstI; temp_diff = difference(i, inst.valueSparse(p1), cmp.valueSparse(p2)); p1++; p2++; } else if (firstI > secondI) { i = secondI; temp_diff = difference(i, 0, cmp.valueSparse(p2)); p2++; } else { i = firstI; temp_diff = difference(i, inst.valueSparse(p1), 0); p1++; } if (m_weightByDistance) { temp_diff *= (m_weightsByRank[j] / distNormAtt[k]); } else { if (m_stored[k] > 0) { temp_diff /= (double) m_stored[k]; } } if (m_numClasses > 2) { m_weights[i] += ((m_classProbs[k] / w_norm) * temp_diff); } else { m_weights[i] += temp_diff; } } } } } } /** * Find the K nearest instances to supplied instance if the class is * numeric, or the K nearest Hits (same class) and Misses (K from each of * the other classes) if the class is discrete. * * @param instNum * the index of the instance to find nearest neighbours of */ private void findKHitMiss(int instNum) { int i, j; int cl; double ww; double temp_diff = 0.0; Instance thisInst = m_trainInstances.instance(instNum); for (i = 0; i < m_numInstances; i++) { if (i != instNum) { Instance cmpInst = m_trainInstances.instance(i); temp_diff = distance(cmpInst, thisInst); // class of this training instance or 0 if numeric if (m_numericClass) { cl = 0; } else { cl = (int) m_trainInstances.instance(i).value(m_classIndex); } // add this diff to the list for the class of this instance if (m_stored[cl] < m_Knn) { m_karray[cl][m_stored[cl]][0] = temp_diff; m_karray[cl][m_stored[cl]][1] = i; m_stored[cl]++; // note the worst diff for this class for (j = 0, ww = -1.0; j < m_stored[cl]; j++) { if (m_karray[cl][j][0] > ww) { ww = m_karray[cl][j][0]; m_index[cl] = j; } } m_worst[cl] = ww; } else /* * if we already have stored knn for this class then check to * see if this instance is better than the worst */ { if (temp_diff < m_karray[cl][m_index[cl]][0]) { m_karray[cl][m_index[cl]][0] = temp_diff; m_karray[cl][m_index[cl]][1] = i; for (j = 0, ww = -1.0; j < m_stored[cl]; j++) { if (m_karray[cl][j][0] > ww) { ww = m_karray[cl][j][0]; m_index[cl] = j; } } m_worst[cl] = ww; } } } } } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 5511 $"); } public ArrayList<Double> getWeights() { return weights_arr; } public ArrayList<Integer> getIndexes() { return indexes; } public ArrayList<String> getReliefSubset() { ArrayList<String> ReliefSubset = new ArrayList<String>(); for (int j = 0; j < indexes.size(); j++) { int k = indexes.get(j); ReliefSubset.add(featureNames_Arr[k]); } return ReliefSubset; } public Instances createReliefInput(ArrayList<ArrayList<Double>> dataset, String[] featureNames_Arr, ArrayList<Double> labels) { this.featureNames_Arr = featureNames_Arr; // create attributes FastVector fv = new FastVector(); for (int i = 0; i <= featureNames_Arr.length; i++) { if (i == featureNames_Arr.length) { fv.addElement(new Attribute("@@class@@")); continue; } fv.addElement(new Attribute(featureNames_Arr[i])); } // transform dataset so that each line represents each window - add // class label as well ArrayList<ArrayList<Double>> ReliefInput = new ArrayList<ArrayList<Double>>(); for (int i = 0; i < dataset.get(0).size(); i++) { ArrayList<Double> featT = new ArrayList<Double>(); for (int j = 0; j < dataset.size(); j++) { featT.add(dataset.get(j).get(i)); } featT.add(labels.get(i)); ReliefInput.add(featT); } // transform dataset into Instances type Instances ReliefInstances = new Instances("Features", fv, dataset.size()); for (int i = 0; i < ReliefInput.size(); i++) { double[] vals = CollectionUtilities.listToArray(ReliefInput.get(i)); Instance instWeka = new Instance(vals.length); for (int j = 0; j < vals.length; j++) { instWeka.setValue(j, vals[j]); } ReliefInstances.add(instWeka); } ReliefInstances.setClassIndex(ReliefInstances.numAttributes() - 1); return ReliefInstances; } public int getsize() { int sz = 0; for (int i = 0; i < weights_arr.size(); i++) { if (weights_arr.get(i).equals(Double.NaN)) { sz++; } } return sz; } public boolean containsNan() { int counter = 0; for (int i = 0; i < weights_arr.size(); i++) { if (weights_arr.get(i).equals(Double.NaN)) { counter++; } } if (counter == weights_arr.size()) return true; else return false; } // ============ // Test method. // ============ /** * Main method for testing this class. * * @param args * the options */ public static void main(String[] args) { runEvaluator(new ReliefFAttributeEval(), args); } }