weka.associations.Apriori.java Source code

Java tutorial

Introduction

Here is the source code for weka.associations.Apriori.java

Source

/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

/*
 *    Apriori.java
 *    Copyright (C) 1999-2012 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.associations;

import java.util.ArrayList;
import java.util.Enumeration;
import java.util.Hashtable;
import java.util.List;
import java.util.Vector;

import weka.core.AttributeStats;
import weka.core.Capabilities;
import weka.core.Capabilities.Capability;
import weka.core.Instances;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.RevisionUtils;
import weka.core.SelectedTag;
import weka.core.Tag;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;
import weka.core.TechnicalInformationHandler;
import weka.core.Utils;
import weka.core.WekaEnumeration;
import weka.filters.Filter;
import weka.filters.unsupervised.attribute.Remove;

/**
 * <!-- globalinfo-start --> Class implementing an Apriori-type algorithm.
 * Iteratively reduces the minimum support until it finds the required number of
 * rules with the given minimum confidence.<br/>
 * The algorithm has an option to mine class association rules. It is adapted as
 * explained in the second reference.<br/>
 * <br/>
 * For more information see:<br/>
 * <br/>
 * R. Agrawal, R. Srikant: Fast Algorithms for Mining Association Rules in Large
 * Databases. In: 20th International Conference on Very Large Data Bases,
 * 478-499, 1994.<br/>
 * <br/>
 * Bing Liu, Wynne Hsu, Yiming Ma: Integrating Classification and Association
 * Rule Mining. In: Fourth International Conference on Knowledge Discovery and
 * Data Mining, 80-86, 1998.
 * <p/>
 * <!-- globalinfo-end -->
 * 
 * <!-- technical-bibtex-start --> BibTeX:
 * 
 * <pre>
 * &#64;inproceedings{Agrawal1994,
 *    author = {R. Agrawal and R. Srikant},
 *    booktitle = {20th International Conference on Very Large Data Bases},
 *    pages = {478-499},
 *    publisher = {Morgan Kaufmann, Los Altos, CA},
 *    title = {Fast Algorithms for Mining Association Rules in Large Databases},
 *    year = {1994}
 * }
 * 
 * &#64;inproceedings{Liu1998,
 *    author = {Bing Liu and Wynne Hsu and Yiming Ma},
 *    booktitle = {Fourth International Conference on Knowledge Discovery and Data Mining},
 *    pages = {80-86},
 *    publisher = {AAAI Press},
 *    title = {Integrating Classification and Association Rule Mining},
 *    year = {1998}
 * }
 * </pre>
 * <p/>
 * <!-- technical-bibtex-end -->
 * 
 * <!-- options-start --> Valid options are:
 * <p/>
 * 
 * <pre>
 * -N &lt;required number of rules output&gt;
 *  The required number of rules. (default = 10)
 * </pre>
 * 
 * <pre>
 * -T &lt;0=confidence | 1=lift | 2=leverage | 3=Conviction&gt;
 *  The metric type by which to rank rules. (default = confidence)
 * </pre>
 * 
 * <pre>
 * -C &lt;minimum metric score of a rule&gt;
 *  The minimum confidence of a rule. (default = 0.9)
 * </pre>
 * 
 * <pre>
 * -D &lt;delta for minimum support&gt;
 *  The delta by which the minimum support is decreased in
 *  each iteration. (default = 0.05)
 * </pre>
 * 
 * <pre>
 * -U &lt;upper bound for minimum support&gt;
 *  Upper bound for minimum support. (default = 1.0)
 * </pre>
 * 
 * <pre>
 * -M &lt;lower bound for minimum support&gt;
 *  The lower bound for the minimum support. (default = 0.1)
 * </pre>
 * 
 * <pre>
 * -S &lt;significance level&gt;
 *  If used, rules are tested for significance at
 *  the given level. Slower. (default = no significance testing)
 * </pre>
 * 
 * <pre>
 * -I
 *  If set the itemsets found are also output. (default = no)
 * </pre>
 * 
 * <pre>
 * -R
 *  Remove columns that contain all missing values (default = no)
 * </pre>
 * 
 * <pre>
 * -V
 *  Report progress iteratively. (default = no)
 * </pre>
 * 
 * <pre>
 * -A
 *  If set class association rules are mined. (default = no)
 * </pre>
 * 
 * <pre>
 * -Z
 *  Treat zero (i.e. first value of nominal attributes) as missing
 * </pre>
 * 
 * <pre>
 * -B &lt;toString delimiters&gt;
 *  If used, two characters to use as rule delimiters
 *  in the result of toString: the first to delimit fields,
 *  the second to delimit items within fields.
 *  (default = traditional toString result)
 * </pre>
 * 
 * <pre>
 * -c &lt;the class index&gt;
 *  The class index. (default = last)
 * </pre>
 * 
 * <!-- options-end -->
 * 
 * @author Eibe Frank (eibe@cs.waikato.ac.nz)
 * @author Mark Hall (mhall@cs.waikato.ac.nz)
 * @author Stefan Mutter (mutter@cs.waikato.ac.nz)
 * @version $Revision$
 */
public class Apriori extends AbstractAssociator
        implements OptionHandler, AssociationRulesProducer, CARuleMiner, TechnicalInformationHandler {

    /** for serialization */
    static final long serialVersionUID = 3277498842319212687L;

    /** The minimum support. */
    protected double m_minSupport;

    /** The upper bound on the support */
    protected double m_upperBoundMinSupport;

    /** The lower bound for the minimum support. */
    protected double m_lowerBoundMinSupport;

    /** Metric type: Confidence */
    protected static final int CONFIDENCE = 0;
    /** Metric type: Lift */
    protected static final int LIFT = 1;
    /** Metric type: Leverage */
    protected static final int LEVERAGE = 2;
    /** Metric type: Conviction */
    protected static final int CONVICTION = 3;
    /** Metric types. */
    public static final Tag[] TAGS_SELECTION = { new Tag(CONFIDENCE, "Confidence"), new Tag(LIFT, "Lift"),
            new Tag(LEVERAGE, "Leverage"), new Tag(CONVICTION, "Conviction") };

    /** The selected metric type. */
    protected int m_metricType = CONFIDENCE;

    /** The minimum metric score. */
    protected double m_minMetric;

    /** The maximum number of rules that are output. */
    protected int m_numRules;

    /** Delta by which m_minSupport is decreased in each iteration. */
    protected double m_delta;

    /** Significance level for optional significance test. */
    protected double m_significanceLevel;

    /** Number of cycles used before required number of rules was one. */
    protected int m_cycles;

    /** The set of all sets of itemsets L. */
    protected ArrayList<ArrayList<Object>> m_Ls;

    /** The same information stored in hash tables. */
    protected ArrayList<Hashtable<ItemSet, Integer>> m_hashtables;

    /** The list of all generated rules. */
    protected ArrayList<Object>[] m_allTheRules;

    /**
     * The instances (transactions) to be used for generating the association
     * rules.
     */
    protected Instances m_instances;

    /** Output itemsets found? */
    protected boolean m_outputItemSets;

    /** Remove columns with all missing values */
    protected boolean m_removeMissingCols;

    /** Report progress iteratively */
    protected boolean m_verbose;

    /** Only the class attribute of all Instances. */
    protected Instances m_onlyClass;

    /** The class index. */
    protected int m_classIndex;

    /** Flag indicating whether class association rules are mined. */
    protected boolean m_car;

    /**
     * Treat zeros as missing (rather than a value in their own right)
     */
    protected boolean m_treatZeroAsMissing = false;

    /**
     * ToString delimiters, if any
     */
    protected String m_toStringDelimiters = null;

    /**
     * Returns a string describing this associator
     * 
     * @return a description of the evaluator suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String globalInfo() {
        return "Class implementing an Apriori-type algorithm. Iteratively reduces "
                + "the minimum support until it finds the required number of rules with "
                + "the given minimum confidence.\n"
                + "The algorithm has an option to mine class association rules. It is "
                + "adapted as explained in the second reference.\n\n" + "For more information see:\n\n"
                + getTechnicalInformation().toString();
    }

    /**
     * Returns an instance of a TechnicalInformation object, containing detailed
     * information about the technical background of this class, e.g., paper
     * reference or book this class is based on.
     * 
     * @return the technical information about this class
     */
    @Override
    public TechnicalInformation getTechnicalInformation() {
        TechnicalInformation result;
        TechnicalInformation additional;

        result = new TechnicalInformation(Type.INPROCEEDINGS);
        result.setValue(Field.AUTHOR, "R. Agrawal and R. Srikant");
        result.setValue(Field.TITLE, "Fast Algorithms for Mining Association Rules in Large Databases");
        result.setValue(Field.BOOKTITLE, "20th International Conference on Very Large Data Bases");
        result.setValue(Field.YEAR, "1994");
        result.setValue(Field.PAGES, "478-499");
        result.setValue(Field.PUBLISHER, "Morgan Kaufmann, Los Altos, CA");

        additional = result.add(Type.INPROCEEDINGS);
        additional.setValue(Field.AUTHOR, "Bing Liu and Wynne Hsu and Yiming Ma");
        additional.setValue(Field.TITLE, "Integrating Classification and Association Rule Mining");
        additional.setValue(Field.BOOKTITLE,
                "Fourth International Conference on Knowledge Discovery and Data Mining");
        additional.setValue(Field.YEAR, "1998");
        additional.setValue(Field.PAGES, "80-86");
        additional.setValue(Field.PUBLISHER, "AAAI Press");

        return result;
    }

    /**
     * Constructor that allows to sets default values for the minimum confidence
     * and the maximum number of rules the minimum confidence.
     */
    public Apriori() {

        resetOptions();
    }

    /**
     * Resets the options to the default values.
     */
    public void resetOptions() {

        m_removeMissingCols = false;
        m_verbose = false;
        m_delta = 0.05;
        m_minMetric = 0.90;
        m_numRules = 10;
        m_lowerBoundMinSupport = 0.1;
        m_upperBoundMinSupport = 1.0;
        m_significanceLevel = -1;
        m_outputItemSets = false;
        m_car = false;
        m_classIndex = -1;
        m_treatZeroAsMissing = false;
        m_metricType = CONFIDENCE;
    }

    /**
     * Removes columns that are all missing from the data
     * 
     * @param instances the instances
     * @return a new set of instances with all missing columns removed
     * @throws Exception if something goes wrong
     */
    protected Instances removeMissingColumns(Instances instances) throws Exception {

        int numInstances = instances.numInstances();
        StringBuffer deleteString = new StringBuffer();
        int removeCount = 0;
        boolean first = true;
        int maxCount = 0;

        for (int i = 0; i < instances.numAttributes(); i++) {
            AttributeStats as = instances.attributeStats(i);
            if (m_upperBoundMinSupport == 1.0 && maxCount != numInstances) {
                // see if we can decrease this by looking for the most frequent value
                int[] counts = as.nominalCounts;
                if (counts[Utils.maxIndex(counts)] > maxCount) {
                    maxCount = counts[Utils.maxIndex(counts)];
                }
            }
            if (as.missingCount == numInstances) {
                if (first) {
                    deleteString.append((i + 1));
                    first = false;
                } else {
                    deleteString.append("," + (i + 1));
                }
                removeCount++;
            }
        }
        if (m_verbose) {
            System.err.println("Removed : " + removeCount + " columns with all missing " + "values.");
        }
        if (m_upperBoundMinSupport == 1.0 && maxCount != numInstances) {
            m_upperBoundMinSupport = (double) maxCount / (double) numInstances;
            if (m_verbose) {
                System.err.println("Setting upper bound min support to : " + m_upperBoundMinSupport);
            }
        }

        if (deleteString.toString().length() > 0) {
            Remove af = new Remove();
            af.setAttributeIndices(deleteString.toString());
            af.setInvertSelection(false);
            af.setInputFormat(instances);
            Instances newInst = Filter.useFilter(instances, af);

            return newInst;
        }
        return instances;
    }

    /**
     * Returns default capabilities of the classifier.
     * 
     * @return the capabilities of this classifier
     */
    @Override
    public Capabilities getCapabilities() {
        Capabilities result = super.getCapabilities();
        result.disableAll();

        // enable what we can handle

        // attributes
        result.enable(Capability.NOMINAL_ATTRIBUTES);
        result.enable(Capability.MISSING_VALUES);

        // class (can handle a nominal class if CAR rules are selected). This
        result.enable(Capability.NO_CLASS);
        result.enable(Capability.NOMINAL_CLASS);
        result.enable(Capability.MISSING_CLASS_VALUES);

        return result;
    }

    /**
     * Method that generates all large itemsets with a minimum support, and from
     * these all association rules with a minimum confidence.
     * 
     * @param instances the instances to be used for generating the associations
     * @throws Exception if rules can't be built successfully
     */
    @SuppressWarnings("unchecked")
    @Override
    public void buildAssociations(Instances instances) throws Exception {

        double[] confidences, supports;
        int[] indices;
        ArrayList<Object>[] sortedRuleSet;
        double necSupport = 0;

        instances = new Instances(instances);

        if (m_removeMissingCols) {
            instances = removeMissingColumns(instances);
        }
        if (m_car && m_metricType != CONFIDENCE) {
            throw new Exception("For CAR-Mining metric type has to be confidence!");
        }

        // only set class index if CAR is requested
        if (m_car) {
            if (m_classIndex == -1) {
                instances.setClassIndex(instances.numAttributes() - 1);
            } else if (m_classIndex <= instances.numAttributes() && m_classIndex > 0) {
                instances.setClassIndex(m_classIndex - 1);
            } else {
                throw new Exception("Invalid class index.");
            }
        }

        // can associator handle the data?
        getCapabilities().testWithFail(instances);

        m_cycles = 0;

        // make sure that the lower bound is equal to at least one instance
        double lowerBoundMinSupportToUse = (m_lowerBoundMinSupport * instances.numInstances() < 1.0)
                ? 1.0 / instances.numInstances()
                : m_lowerBoundMinSupport;

        if (m_car) {
            // m_instances does not contain the class attribute
            m_instances = LabeledItemSet.divide(instances, false);

            // m_onlyClass contains only the class attribute
            m_onlyClass = LabeledItemSet.divide(instances, true);
        } else {
            m_instances = instances;
        }

        if (m_car && m_numRules == Integer.MAX_VALUE) {
            // Set desired minimum support
            m_minSupport = lowerBoundMinSupportToUse;
        } else {
            // Decrease minimum support until desired number of rules found.
            // m_minSupport = m_upperBoundMinSupport - m_delta;
            m_minSupport = 1.0 - m_delta;
            m_minSupport = (m_minSupport < lowerBoundMinSupportToUse) ? lowerBoundMinSupportToUse : m_minSupport;
        }

        do {
            // Reserve space for variables
            m_Ls = new ArrayList<ArrayList<Object>>();
            m_hashtables = new ArrayList<Hashtable<ItemSet, Integer>>();
            m_allTheRules = new ArrayList[6];
            m_allTheRules[0] = new ArrayList<Object>();
            m_allTheRules[1] = new ArrayList<Object>();
            m_allTheRules[2] = new ArrayList<Object>();
            // if (m_metricType != CONFIDENCE || m_significanceLevel != -1) {
            m_allTheRules[3] = new ArrayList<Object>();
            m_allTheRules[4] = new ArrayList<Object>();
            m_allTheRules[5] = new ArrayList<Object>();
            // }
            sortedRuleSet = new ArrayList[6];
            sortedRuleSet[0] = new ArrayList<Object>();
            sortedRuleSet[1] = new ArrayList<Object>();
            sortedRuleSet[2] = new ArrayList<Object>();
            // if (m_metricType != CONFIDENCE || m_significanceLevel != -1) {
            sortedRuleSet[3] = new ArrayList<Object>();
            sortedRuleSet[4] = new ArrayList<Object>();
            sortedRuleSet[5] = new ArrayList<Object>();
            // }
            if (!m_car) {
                // Find large itemsets and rules
                findLargeItemSets();
                if (m_significanceLevel != -1 || m_metricType != CONFIDENCE) {
                    findRulesBruteForce();
                } else {
                    findRulesQuickly();
                }
            } else {
                findLargeCarItemSets();
                findCarRulesQuickly();
            }

            // prune rules for upper bound min support
            if (m_upperBoundMinSupport < 1.0) {
                pruneRulesForUpperBoundSupport();
            }

            // Sort rules according to their support
            /*
             * supports = new double[m_allTheRules[2].size()]; for (int i = 0; i <
             * m_allTheRules[2].size(); i++) supports[i] =
             * (double)((AprioriItemSet)m_allTheRules[1].elementAt(i)).support();
             * indices = Utils.stableSort(supports); for (int i = 0; i <
             * m_allTheRules[2].size(); i++) {
             * sortedRuleSet[0].add(m_allTheRules[0].get(indices[i]));
             * sortedRuleSet[1].add(m_allTheRules[1].get(indices[i]));
             * sortedRuleSet[2].add(m_allTheRules[2].get(indices[i])); if
             * (m_metricType != CONFIDENCE || m_significanceLevel != -1) {
             * sortedRuleSet[3].add(m_allTheRules[3].get(indices[i]));
             * sortedRuleSet[4].add(m_allTheRules[4].get(indices[i]));
             * sortedRuleSet[5].add(m_allTheRules[5].get(indices[i])); } }
             */
            int j = m_allTheRules[2].size() - 1;
            supports = new double[m_allTheRules[2].size()];
            for (int i = 0; i < (j + 1); i++) {
                supports[j - i] = ((double) ((ItemSet) m_allTheRules[1].get(j - i)).support()) * (-1);
            }
            indices = Utils.stableSort(supports);
            for (int i = 0; i < (j + 1); i++) {
                sortedRuleSet[0].add(m_allTheRules[0].get(indices[j - i]));
                sortedRuleSet[1].add(m_allTheRules[1].get(indices[j - i]));
                sortedRuleSet[2].add(m_allTheRules[2].get(indices[j - i]));
                if (!m_car) {
                    // if (m_metricType != CONFIDENCE || m_significanceLevel != -1) {
                    sortedRuleSet[3].add(m_allTheRules[3].get(indices[j - i]));
                    sortedRuleSet[4].add(m_allTheRules[4].get(indices[j - i]));
                    sortedRuleSet[5].add(m_allTheRules[5].get(indices[j - i]));
                }
                // }
            }

            // Sort rules according to their confidence
            m_allTheRules[0].clear();
            m_allTheRules[1].clear();
            m_allTheRules[2].clear();
            // if (m_metricType != CONFIDENCE || m_significanceLevel != -1) {
            m_allTheRules[3].clear();
            m_allTheRules[4].clear();
            m_allTheRules[5].clear();
            // }
            confidences = new double[sortedRuleSet[2].size()];
            int sortType = 2 + m_metricType;

            for (int i = 0; i < sortedRuleSet[2].size(); i++) {
                confidences[i] = ((Double) sortedRuleSet[sortType].get(i)).doubleValue();
            }
            indices = Utils.stableSort(confidences);
            for (int i = sortedRuleSet[0].size() - 1; (i >= (sortedRuleSet[0].size() - m_numRules))
                    && (i >= 0); i--) {
                m_allTheRules[0].add(sortedRuleSet[0].get(indices[i]));
                m_allTheRules[1].add(sortedRuleSet[1].get(indices[i]));
                m_allTheRules[2].add(sortedRuleSet[2].get(indices[i]));
                // if (m_metricType != CONFIDENCE || m_significanceLevel != -1) {
                if (!m_car) {
                    m_allTheRules[3].add(sortedRuleSet[3].get(indices[i]));
                    m_allTheRules[4].add(sortedRuleSet[4].get(indices[i]));
                    m_allTheRules[5].add(sortedRuleSet[5].get(indices[i]));
                }
                // }
            }

            if (m_verbose) {
                if (m_Ls.size() > 1) {
                    System.out.println(toString());
                }
            }

            if (m_minSupport == lowerBoundMinSupportToUse || m_minSupport - m_delta > lowerBoundMinSupportToUse) {
                m_minSupport -= m_delta;
            } else {
                m_minSupport = lowerBoundMinSupportToUse;
            }

            necSupport = Math.rint(m_minSupport * m_instances.numInstances());

            m_cycles++;
        } while ((m_allTheRules[0].size() < m_numRules) && (Utils.grOrEq(m_minSupport, lowerBoundMinSupportToUse))
        /* (necSupport >= lowerBoundNumInstancesSupport) */
        /* (Utils.grOrEq(m_minSupport, m_lowerBoundMinSupport)) */ && (necSupport >= 1));
        m_minSupport += m_delta;
    }

    private void pruneRulesForUpperBoundSupport() {
        int necMaxSupport = (int) (m_upperBoundMinSupport * m_instances.numInstances() + 0.5);

        @SuppressWarnings("unchecked")
        ArrayList<Object>[] prunedRules = new ArrayList[6];
        for (int i = 0; i < 6; i++) {
            prunedRules[i] = new ArrayList<Object>();
        }

        for (int i = 0; i < m_allTheRules[0].size(); i++) {
            if (((ItemSet) m_allTheRules[1].get(i)).support() <= necMaxSupport) {
                prunedRules[0].add(m_allTheRules[0].get(i));
                prunedRules[1].add(m_allTheRules[1].get(i));
                prunedRules[2].add(m_allTheRules[2].get(i));

                if (!m_car) {
                    prunedRules[3].add(m_allTheRules[3].get(i));
                    prunedRules[4].add(m_allTheRules[4].get(i));
                    prunedRules[5].add(m_allTheRules[5].get(i));
                }
            }
        }
        m_allTheRules[0] = prunedRules[0];
        m_allTheRules[1] = prunedRules[1];
        m_allTheRules[2] = prunedRules[2];
        m_allTheRules[3] = prunedRules[3];
        m_allTheRules[4] = prunedRules[4];
        m_allTheRules[5] = prunedRules[5];

    }

    /**
     * Method that mines all class association rules with minimum support and with
     * a minimum confidence.
     * 
     * @return an sorted array of FastVector (confidence depended) containing the
     *         rules and metric information
     * @param data the instances for which class association rules should be mined
     * @throws Exception if rules can't be built successfully
     */
    @Override
    public ArrayList<Object>[] mineCARs(Instances data) throws Exception {

        m_car = true;
        buildAssociations(data);
        return m_allTheRules;
    }

    /**
     * Gets the instances without the class atrribute.
     * 
     * @return the instances without the class attribute.
     */
    @Override
    public Instances getInstancesNoClass() {

        return m_instances;
    }

    /**
     * Gets only the class attribute of the instances.
     * 
     * @return the class attribute of all instances.
     */
    @Override
    public Instances getInstancesOnlyClass() {

        return m_onlyClass;
    }

    /**
     * Returns an enumeration describing the available options.
     * 
     * @return an enumeration of all the available options.
     */
    @Override
    public Enumeration<Option> listOptions() {

        String string1 = "\tThe required number of rules. (default = " + m_numRules + ")",
                string2 = "\tThe minimum confidence of a rule. (default = " + m_minMetric + ")",
                string3 = "\tThe delta by which the minimum support is decreased in\n",
                string4 = "\teach iteration. (default = " + m_delta + ")",
                string5 = "\tThe lower bound for the minimum support. (default = " + m_lowerBoundMinSupport + ")",
                string6 = "\tIf used, rules are tested for significance at\n",
                string7 = "\tthe given level. Slower. (default = no significance testing)",
                string8 = "\tIf set the itemsets found are also output. (default = no)",
                string9 = "\tIf set class association rules are mined. (default = no)",
                string10 = "\tThe class index. (default = last)",
                stringType = "\tThe metric type by which to rank rules. (default = " + "confidence)",
                stringZeroAsMissing = "\tTreat zero (i.e. first value of nominal attributes) as " + "missing",
                stringToStringDelimiters = "\tIf used, two characters to use as rule delimiters\n"
                        + "\tin the result of toString: the first to delimit fields,\n"
                        + "\tthe second to delimit items within fields.\n"
                        + "\t(default = traditional toString result)";

        Vector<Option> newVector = new Vector<Option>(14);

        newVector.add(new Option(string1, "N", 1, "-N <required number of rules output>"));
        newVector
                .add(new Option(stringType, "T", 1, "-T <0=confidence | 1=lift | " + "2=leverage | 3=Conviction>"));
        newVector.add(new Option(string2, "C", 1, "-C <minimum metric score of a rule>"));
        newVector.add(new Option(string3 + string4, "D", 1, "-D <delta for minimum support>"));
        newVector.add(new Option("\tUpper bound for minimum support. " + "(default = 1.0)", "U", 1,
                "-U <upper bound for minimum support>"));
        newVector.add(new Option(string5, "M", 1, "-M <lower bound for minimum support>"));
        newVector.add(new Option(string6 + string7, "S", 1, "-S <significance level>"));
        newVector.add(new Option(string8, "I", 0, "-I"));
        newVector.add(
                new Option("\tRemove columns that contain " + "all missing values (default = no)", "R", 0, "-R"));
        newVector.add(new Option("\tReport progress iteratively. (default " + "= no)", "V", 0, "-V"));
        newVector.add(new Option(string9, "A", 0, "-A"));
        newVector.add(new Option(stringZeroAsMissing, "Z", 0, "-Z"));
        newVector.add(new Option(stringToStringDelimiters, "B", 1, "-B <toString delimiters>"));
        newVector.add(new Option(string10, "c", 1, "-c <the class index>"));

        return newVector.elements();
    }

    /**
     * Parses a given list of options.
     * <p/>
     * 
     * <!-- options-start --> Valid options are:
     * <p/>
     * 
     * <pre>
     * -N &lt;required number of rules output&gt;
     *  The required number of rules. (default = 10)
     * </pre>
     * 
     * <pre>
     * -T &lt;0=confidence | 1=lift | 2=leverage | 3=Conviction&gt;
     *  The metric type by which to rank rules. (default = confidence)
     * </pre>
     * 
     * <pre>
     * -C &lt;minimum metric score of a rule&gt;
     *  The minimum confidence of a rule. (default = 0.9)
     * </pre>
     * 
     * <pre>
     * -D &lt;delta for minimum support&gt;
     *  The delta by which the minimum support is decreased in
     *  each iteration. (default = 0.05)
     * </pre>
     * 
     * <pre>
     * -U &lt;upper bound for minimum support&gt;
     *  Upper bound for minimum support. (default = 1.0)
     * </pre>
     * 
     * <pre>
     * -M &lt;lower bound for minimum support&gt;
     *  The lower bound for the minimum support. (default = 0.1)
     * </pre>
     * 
     * <pre>
     * -S &lt;significance level&gt;
     *  If used, rules are tested for significance at
     *  the given level. Slower. (default = no significance testing)
     * </pre>
     * 
     * <pre>
     * -I
     *  If set the itemsets found are also output. (default = no)
     * </pre>
     * 
     * <pre>
     * -R
     *  Remove columns that contain all missing values (default = no)
     * </pre>
     * 
     * <pre>
     * -V
     *  Report progress iteratively. (default = no)
     * </pre>
     * 
     * <pre>
     * -A
     *  If set class association rules are mined. (default = no)
     * </pre>
     * 
     * <pre>
     * -Z
     *  Treat zero (i.e. first value of nominal attributes) as missing
     * </pre>
     * 
     * <pre>
     * -B &lt;toString delimiters&gt;
     *  If used, two characters to use as rule delimiters
     *  in the result of toString: the first to delimit fields,
     *  the second to delimit items within fields.
     *  (default = traditional toString result)
     * </pre>
     * 
     * <pre>
     * -c &lt;the class index&gt;
     *  The class index. (default = last)
     * </pre>
     * 
     * <!-- options-end -->
     * 
     * @param options the list of options as an array of strings
     * @throws Exception if an option is not supported
     */
    @Override
    public void setOptions(String[] options) throws Exception {

        resetOptions();
        String numRulesString = Utils.getOption('N', options), minConfidenceString = Utils.getOption('C', options),
                deltaString = Utils.getOption('D', options), maxSupportString = Utils.getOption('U', options),
                minSupportString = Utils.getOption('M', options),
                significanceLevelString = Utils.getOption('S', options),
                classIndexString = Utils.getOption('c', options),
                toStringDelimitersString = Utils.getOption('B', options);

        String metricTypeString = Utils.getOption('T', options);
        if (metricTypeString.length() != 0) {
            setMetricType(new SelectedTag(Integer.parseInt(metricTypeString), TAGS_SELECTION));
        }

        if (numRulesString.length() != 0) {
            m_numRules = Integer.parseInt(numRulesString);
        }
        if (classIndexString.length() != 0) {
            if (classIndexString.equalsIgnoreCase("last")) {
                m_classIndex = -1;
            } else if (classIndexString.equalsIgnoreCase("first")) {
                m_classIndex = 0;
            } else {
                m_classIndex = Integer.parseInt(classIndexString);
            }
        }
        if (minConfidenceString.length() != 0) {
            m_minMetric = (new Double(minConfidenceString)).doubleValue();
        }
        if (deltaString.length() != 0) {
            m_delta = (new Double(deltaString)).doubleValue();
        }
        if (maxSupportString.length() != 0) {
            setUpperBoundMinSupport((new Double(maxSupportString)).doubleValue());
        }
        if (minSupportString.length() != 0) {
            m_lowerBoundMinSupport = (new Double(minSupportString)).doubleValue();
        }
        if (significanceLevelString.length() != 0) {
            m_significanceLevel = (new Double(significanceLevelString)).doubleValue();
        }
        m_outputItemSets = Utils.getFlag('I', options);
        m_car = Utils.getFlag('A', options);
        m_verbose = Utils.getFlag('V', options);
        m_treatZeroAsMissing = Utils.getFlag('Z', options);

        setRemoveAllMissingCols(Utils.getFlag('R', options));

        if (toStringDelimitersString.length() == 2) {
            m_toStringDelimiters = toStringDelimitersString;
        }

        Utils.checkForRemainingOptions(options);
    }

    /**
     * Gets the current settings of the Apriori object.
     * 
     * @return an array of strings suitable for passing to setOptions
     */
    @Override
    public String[] getOptions() {

        String[] options = new String[23];
        int current = 0;

        if (m_outputItemSets) {
            options[current++] = "-I";
        }

        if (getRemoveAllMissingCols()) {
            options[current++] = "-R";
        }

        options[current++] = "-N";
        options[current++] = "" + m_numRules;
        options[current++] = "-T";
        options[current++] = "" + m_metricType;
        options[current++] = "-C";
        options[current++] = "" + m_minMetric;
        options[current++] = "-D";
        options[current++] = "" + m_delta;
        options[current++] = "-U";
        options[current++] = "" + m_upperBoundMinSupport;
        options[current++] = "-M";
        options[current++] = "" + m_lowerBoundMinSupport;
        options[current++] = "-S";
        options[current++] = "" + m_significanceLevel;
        if (m_car) {
            options[current++] = "-A";
        }
        if (m_verbose) {
            options[current++] = "-V";
        }

        if (m_treatZeroAsMissing) {
            options[current++] = "-Z";
        }
        options[current++] = "-c";
        options[current++] = "" + m_classIndex;

        if (m_toStringDelimiters != null) {
            options[current++] = "-B";
            options[current++] = m_toStringDelimiters;
        }

        while (current < options.length) {
            options[current++] = "";
        }
        return options;
    }

    /**
     * Outputs the size of all the generated sets of itemsets and the rules.
     * 
     * @return a string representation of the model
     */
    @Override
    public String toString() {

        StringBuffer text = new StringBuffer();

        if (m_Ls.size() <= 1) {
            return "\nNo large itemsets and rules found!\n";
        }
        text.append("\nApriori\n=======\n\n");
        text.append("Minimum support: " + Utils.doubleToString(m_minSupport, 2) + " ("
                + ((int) (m_minSupport * m_instances.numInstances() + 0.5)) + " instances)" + '\n');
        text.append("Minimum metric <");
        switch (m_metricType) {
        case CONFIDENCE:
            text.append("confidence>: ");
            break;
        case LIFT:
            text.append("lift>: ");
            break;
        case LEVERAGE:
            text.append("leverage>: ");
            break;
        case CONVICTION:
            text.append("conviction>: ");
            break;
        }
        text.append(Utils.doubleToString(m_minMetric, 2) + '\n');

        if (m_significanceLevel != -1) {
            text.append("Significance level: " + Utils.doubleToString(m_significanceLevel, 2) + '\n');
        }
        text.append("Number of cycles performed: " + m_cycles + '\n');
        text.append("\nGenerated sets of large itemsets:\n");
        if (!m_car) {
            for (int i = 0; i < m_Ls.size(); i++) {
                text.append("\nSize of set of large itemsets L(" + (i + 1) + "): " + (m_Ls.get(i)).size() + '\n');
                if (m_outputItemSets) {
                    text.append("\nLarge Itemsets L(" + (i + 1) + "):\n");
                    for (int j = 0; j < (m_Ls.get(i)).size(); j++) {
                        text.append(((AprioriItemSet) (m_Ls.get(i)).get(j)).toString(m_instances) + "\n");
                    }
                }
            }

            text.append("\nBest rules found:\n\n");

            if (m_toStringDelimiters != null) {
                text.append(
                        "Number,Premise,Premise Support,Consequence,Consequence Support,Confidence,Lift,Leverage,LeverageT,Conviction\n");
            }

            for (int i = 0; i < m_allTheRules[0].size(); i++) {
                /*
                 * text.append(Utils.doubleToString((double) i + 1, (int)
                 * (Math.log(m_numRules) / Math.log(10) + 1), 0) + ". " +
                 * ((AprioriItemSet) m_allTheRules[0].get(i)) .toString(m_instances) +
                 * " ==> " + ((AprioriItemSet) m_allTheRules[1].get(i))
                 * .toString(m_instances)); text.append("    " + ((m_metricType ==
                 * CONFIDENCE) ? "<" : "") + "conf:(" + Utils.doubleToString( ((Double)
                 * m_allTheRules[2].get(i)).doubleValue(), 2) + ")" + ((m_metricType ==
                 * CONFIDENCE) ? ">" : ""));
                 */

                String outerDelim;
                String innerDelim;

                String stop;
                String implies;

                String confOpen;
                String confClose;

                String liftOpen;
                String liftClose;

                String levOpen;
                String levInner;
                String levClose;

                String convOpen;
                String convClose;

                if (m_toStringDelimiters != null) {
                    outerDelim = m_toStringDelimiters.substring(0, 1);
                    innerDelim = m_toStringDelimiters.substring(1, 2);

                    stop = outerDelim;
                    implies = outerDelim;

                    confOpen = outerDelim;
                    confClose = "";

                    liftOpen = outerDelim;
                    liftClose = "";

                    levOpen = outerDelim;
                    levInner = outerDelim;
                    levClose = "";

                    convOpen = outerDelim;
                    convClose = "";
                } else {
                    outerDelim = " ";
                    innerDelim = " ";

                    stop = ". ";
                    implies = " ==> ";

                    confOpen = "    " + (m_metricType == CONFIDENCE ? "<" : "") + "conf:(";
                    confClose = ")" + (m_metricType == CONFIDENCE ? ">" : "");

                    liftOpen = (m_metricType == LIFT ? " <" : "") + " lift:(";
                    liftClose = ")" + (m_metricType == LIFT ? ">" : "");

                    levOpen = (m_metricType == LEVERAGE ? " <" : "") + " lev:(";
                    levInner = ")" + " [";
                    levClose = "]" + (m_metricType == LEVERAGE ? ">" : "");

                    convOpen = (m_metricType == CONVICTION ? " <" : "") + " conv:(";
                    convClose = ")" + (m_metricType == CONVICTION ? ">" : "");
                }

                char odc = outerDelim.charAt(0);
                char idc = innerDelim.charAt(0);

                String n = Utils.doubleToString((double) i + 1, (int) (Math.log(m_numRules) / Math.log(10) + 1), 0);

                String premise = ((AprioriItemSet) m_allTheRules[0].get(i)).toString(m_instances, odc, idc);
                String consequence = ((AprioriItemSet) m_allTheRules[1].get(i)).toString(m_instances, odc, idc);

                String confidence = Utils.doubleToString(((Double) m_allTheRules[2].get(i)).doubleValue(), 2);
                String lift = Utils.doubleToString(((Double) m_allTheRules[3].get(i)).doubleValue(), 2);
                String leverage = Utils.doubleToString(((Double) m_allTheRules[4].get(i)).doubleValue(), 2);
                String conviction = Utils.doubleToString(((Double) m_allTheRules[5].get(i)).doubleValue(), 2);

                int leverageT = (int) (((Double) m_allTheRules[4].get(i)).doubleValue()
                        * m_instances.numInstances());

                text.append(n).append(stop);
                text.append(premise).append(implies).append(consequence);
                text.append(confOpen).append(confidence).append(confClose);
                // if (/*m_metricType != CONFIDENCE ||*/ m_significanceLevel != -1) {

                text.append(liftOpen).append(lift).append(liftClose);
                text.append(levOpen).append(leverage).append(levInner).append(leverageT).append(levClose);
                text.append(convOpen).append(conviction).append(convClose);

                // if (/*m_metricType != CONFIDENCE ||*/ m_significanceLevel != -1) {
                /*
                 * text.append((m_metricType == LIFT ? " <" : "") + " lift:(" +
                 * Utils.doubleToString( ((Double)
                 * m_allTheRules[3].get(i)).doubleValue(), 2) + ")" + (m_metricType ==
                 * LIFT ? ">" : "")); text.append((m_metricType == LEVERAGE ? " <" : "")
                 * + " lev:(" + Utils.doubleToString( ((Double)
                 * m_allTheRules[4].get(i)).doubleValue(), 2) + ")"); text.append(" [" +
                 * (int) (((Double) m_allTheRules[4].get(i)).doubleValue() * m_instances
                 * .numInstances()) + "]" + (m_metricType == LEVERAGE ? ">" : ""));
                 * text.append((m_metricType == CONVICTION ? " <" : "") + " conv:(" +
                 * Utils.doubleToString( ((Double)
                 * m_allTheRules[5].get(i)).doubleValue(), 2) + ")" + (m_metricType ==
                 * CONVICTION ? ">" : ""));
                 */
                // }
                text.append('\n');
            }
        } else {
            for (int i = 0; i < m_Ls.size(); i++) {
                text.append("\nSize of set of large itemsets L(" + (i + 1) + "): " + (m_Ls.get(i)).size() + '\n');
                if (m_outputItemSets) {
                    text.append("\nLarge Itemsets L(" + (i + 1) + "):\n");
                    for (int j = 0; j < (m_Ls.get(i)).size(); j++) {
                        text.append(((ItemSet) (m_Ls.get(i)).get(j)).toString(m_instances) + "\n");
                        text.append(((LabeledItemSet) (m_Ls.get(i)).get(j)).m_classLabel + "  ");
                        text.append(((LabeledItemSet) (m_Ls.get(i)).get(j)).support() + "\n");
                    }
                }
            }
            text.append("\nBest rules found:\n\n");

            if (m_toStringDelimiters != null) {
                text.append("Number,Premise,Premise Support,Consequence,Consequence Support,Confidence\n");
            }

            for (int i = 0; i < m_allTheRules[0].size(); i++) {
                /*
                 * text.append(Utils.doubleToString((double) i + 1, (int)
                 * (Math.log(m_numRules) / Math.log(10) + 1), 0) + ". " + ((ItemSet)
                 * m_allTheRules[0].get(i)).toString(m_instances) + " ==> " + ((ItemSet)
                 * m_allTheRules[1].get(i)).toString(m_onlyClass) + "    conf:(" +
                 * Utils.doubleToString( ((Double)
                 * m_allTheRules[2].get(i)).doubleValue(), 2) + ")");
                 */

                String outerDelim;
                String innerDelim;

                String stop;
                String implies;

                String confOpen;
                String confClose;

                if (m_toStringDelimiters != null) {
                    outerDelim = m_toStringDelimiters.substring(0, 1);
                    innerDelim = m_toStringDelimiters.substring(1, 2);

                    stop = outerDelim;
                    implies = outerDelim;

                    confOpen = outerDelim;
                    confClose = "";
                } else {
                    outerDelim = " ";
                    innerDelim = " ";

                    stop = ". ";
                    implies = " ==> ";

                    confOpen = "    " + "conf:(";
                    confClose = ")";
                }

                char odc = outerDelim.charAt(0);
                char idc = innerDelim.charAt(0);

                String n = Utils.doubleToString((double) i + 1, (int) (Math.log(m_numRules) / Math.log(10) + 1), 0);

                String premise = ((ItemSet) m_allTheRules[0].get(i)).toString(m_instances, odc, idc);
                String consequence = ((ItemSet) m_allTheRules[1].get(i)).toString(m_onlyClass, odc, idc);

                String confidence = Utils.doubleToString(((Double) m_allTheRules[2].get(i)).doubleValue(), 2);

                text.append(n).append(stop).append(premise).append(implies).append(consequence).append(confOpen)
                        .append(confidence).append(confClose);

                text.append('\n');
            }
        }

        return text.toString();
    }

    /**
     * Returns the metric string for the chosen metric type
     * 
     * @return a string describing the used metric for the interestingness of a
     *         class association rule
     */
    @Override
    public String metricString() {

        switch (m_metricType) {
        case LIFT:
            return "lif";
        case LEVERAGE:
            return "leverage";
        case CONVICTION:
            return "conviction";
        default:
            return "conf";
        }
    }

    /**
     * Returns the tip text for this property
     * 
     * @return tip text for this property suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String removeAllMissingColsTipText() {
        return "Remove columns with all missing values.";
    }

    /**
     * Remove columns containing all missing values.
     * 
     * @param r true if cols are to be removed.
     */
    public void setRemoveAllMissingCols(boolean r) {
        m_removeMissingCols = r;
    }

    /**
     * Returns whether columns containing all missing values are to be removed
     * 
     * @return true if columns are to be removed.
     */
    public boolean getRemoveAllMissingCols() {
        return m_removeMissingCols;
    }

    /**
     * Returns the tip text for this property
     * 
     * @return tip text for this property suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String upperBoundMinSupportTipText() {
        return "Upper bound for minimum support. Start iteratively decreasing "
                + "minimum support from this value.";
    }

    /**
     * Get the value of upperBoundMinSupport.
     * 
     * @return Value of upperBoundMinSupport.
     */
    public double getUpperBoundMinSupport() {

        return m_upperBoundMinSupport;
    }

    /**
     * Set the value of upperBoundMinSupport.
     * 
     * @param v Value to assign to upperBoundMinSupport.
     */
    public void setUpperBoundMinSupport(double v) {

        m_upperBoundMinSupport = v;
    }

    /**
     * Sets the class index
     * 
     * @param index the class index
     */
    @Override
    public void setClassIndex(int index) {

        m_classIndex = index;
    }

    /**
     * Gets the class index
     * 
     * @return the index of the class attribute
     */
    public int getClassIndex() {

        return m_classIndex;
    }

    /**
     * Returns the tip text for this property
     * 
     * @return tip text for this property suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String classIndexTipText() {
        return "Index of the class attribute. If set to -1, the last attribute is taken as class attribute.";

    }

    /**
     * Sets class association rule mining
     * 
     * @param flag if class association rules are mined, false otherwise
     */
    public void setCar(boolean flag) {
        m_car = flag;
    }

    /**
     * Gets whether class association ruels are mined
     * 
     * @return true if class association rules are mined, false otherwise
     */
    public boolean getCar() {
        return m_car;
    }

    /**
     * Returns the tip text for this property
     * 
     * @return tip text for this property suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String carTipText() {
        return "If enabled class association rules are mined instead of (general) association rules.";
    }

    /**
     * Returns the tip text for this property
     * 
     * @return tip text for this property suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String lowerBoundMinSupportTipText() {
        return "Lower bound for minimum support.";
    }

    /**
     * Get the value of lowerBoundMinSupport.
     * 
     * @return Value of lowerBoundMinSupport.
     */
    public double getLowerBoundMinSupport() {

        return m_lowerBoundMinSupport;
    }

    /**
     * Set the value of lowerBoundMinSupport.
     * 
     * @param v Value to assign to lowerBoundMinSupport.
     */
    public void setLowerBoundMinSupport(double v) {

        m_lowerBoundMinSupport = v;
    }

    /**
     * Get the metric type
     * 
     * @return the type of metric to use for ranking rules
     */
    public SelectedTag getMetricType() {
        return new SelectedTag(m_metricType, TAGS_SELECTION);
    }

    /**
     * Returns the tip text for this property
     * 
     * @return tip text for this property suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String metricTypeTipText() {
        return "Set the type of metric by which to rank rules. Confidence is "
                + "the proportion of the examples covered by the premise that are also "
                + "covered by the consequence (Class association rules can only be mined using confidence). Lift is confidence divided by the "
                + "proportion of all examples that are covered by the consequence. This "
                + "is a measure of the importance of the association that is independent "
                + "of support. Leverage is the proportion of additional examples covered "
                + "by both the premise and consequence above those expected if the "
                + "premise and consequence were independent of each other. The total "
                + "number of examples that this represents is presented in brackets "
                + "following the leverage. Conviction is "
                + "another measure of departure from independence. Conviction is given "
                + "by P(premise)P(!consequence) / P(premise, !consequence).";
    }

    /**
     * Set the metric type for ranking rules
     * 
     * @param d the type of metric
     */
    public void setMetricType(SelectedTag d) {

        if (d.getTags() == TAGS_SELECTION) {
            m_metricType = d.getSelectedTag().getID();
        }

        if (m_metricType == CONFIDENCE) {
            setMinMetric(0.9);
        }

        if (m_metricType == LIFT || m_metricType == CONVICTION) {
            setMinMetric(1.1);
        }

        if (m_metricType == LEVERAGE) {
            setMinMetric(0.1);
        }
    }

    /**
     * Returns the tip text for this property
     * 
     * @return tip text for this property suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String minMetricTipText() {
        return "Minimum metric score. Consider only rules with scores higher than " + "this value.";
    }

    /**
     * Get the value of minConfidence.
     * 
     * @return Value of minConfidence.
     */
    public double getMinMetric() {

        return m_minMetric;
    }

    /**
     * Set the value of minConfidence.
     * 
     * @param v Value to assign to minConfidence.
     */
    public void setMinMetric(double v) {

        m_minMetric = v;
    }

    /**
     * Returns the tip text for this property
     * 
     * @return tip text for this property suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String numRulesTipText() {
        return "Number of rules to find.";
    }

    /**
     * Get the value of numRules.
     * 
     * @return Value of numRules.
     */
    public int getNumRules() {

        return m_numRules;
    }

    /**
     * Set the value of numRules.
     * 
     * @param v Value to assign to numRules.
     */
    public void setNumRules(int v) {

        m_numRules = v;
    }

    /**
     * Returns the tip text for this property
     * 
     * @return tip text for this property suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String deltaTipText() {
        return "Iteratively decrease support by this factor. Reduces support "
                + "until min support is reached or required number of rules has been " + "generated.";
    }

    /**
     * Get the value of delta.
     * 
     * @return Value of delta.
     */
    public double getDelta() {

        return m_delta;
    }

    /**
     * Set the value of delta.
     * 
     * @param v Value to assign to delta.
     */
    public void setDelta(double v) {

        m_delta = v;
    }

    /**
     * Returns the tip text for this property
     * 
     * @return tip text for this property suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String significanceLevelTipText() {
        return "Significance level. Significance test (confidence metric only).";
    }

    /**
     * Get the value of significanceLevel.
     * 
     * @return Value of significanceLevel.
     */
    public double getSignificanceLevel() {

        return m_significanceLevel;
    }

    /**
     * Set the value of significanceLevel.
     * 
     * @param v Value to assign to significanceLevel.
     */
    public void setSignificanceLevel(double v) {

        m_significanceLevel = v;
    }

    /**
     * Sets whether itemsets are output as well
     * 
     * @param flag true if itemsets are to be output as well
     */
    public void setOutputItemSets(boolean flag) {
        m_outputItemSets = flag;
    }

    /**
     * Gets whether itemsets are output as well
     * 
     * @return true if itemsets are output as well
     */
    public boolean getOutputItemSets() {
        return m_outputItemSets;
    }

    /**
     * Returns the tip text for this property
     * 
     * @return tip text for this property suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String outputItemSetsTipText() {
        return "If enabled the itemsets are output as well.";
    }

    /**
     * Sets verbose mode
     * 
     * @param flag true if algorithm should be run in verbose mode
     */
    public void setVerbose(boolean flag) {
        m_verbose = flag;
    }

    /**
     * Gets whether algorithm is run in verbose mode
     * 
     * @return true if algorithm is run in verbose mode
     */
    public boolean getVerbose() {
        return m_verbose;
    }

    /**
     * Returns the tip text for this property
     * 
     * @return tip text for this property suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String verboseTipText() {
        return "If enabled the algorithm will be run in verbose mode.";
    }

    /**
     * Returns the tip text for this property
     * 
     * @return tip text for this property suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String treatZeroAsMissingTipText() {
        return "If enabled, zero (that is, the first value of a nominal) is "
                + "treated in the same way as a missing value.";
    }

    /**
     * Sets whether zeros (i.e. the first value of a nominal attribute) should be
     * treated as missing values.
     * 
     * @param z true if zeros should be treated as missing values.
     */
    public void setTreatZeroAsMissing(boolean z) {
        m_treatZeroAsMissing = z;
    }

    /**
     * Gets whether zeros (i.e. the first value of a nominal attribute) is to be
     * treated int he same way as missing values.
     * 
     * @return true if zeros are to be treated like missing values.
     */
    public boolean getTreatZeroAsMissing() {
        return m_treatZeroAsMissing;
    }

    /**
     * Method that finds all large itemsets for the given set of instances.
     * 
     * @throws Exception if an attribute is numeric
     */
    private void findLargeItemSets() throws Exception {

        ArrayList<Object> kMinusOneSets, kSets;
        Hashtable<ItemSet, Integer> hashtable;
        int necSupport, i = 0;

        // Find large itemsets

        // minimum support
        necSupport = (int) (m_minSupport * m_instances.numInstances() + 0.5);

        kSets = AprioriItemSet.singletons(m_instances, m_treatZeroAsMissing);
        if (m_treatZeroAsMissing) {
            AprioriItemSet.upDateCountersTreatZeroAsMissing(kSets, m_instances);
        } else {
            AprioriItemSet.upDateCounters(kSets, m_instances);
        }
        kSets = AprioriItemSet.deleteItemSets(kSets, necSupport, m_instances.numInstances());
        if (kSets.size() == 0) {
            return;
        }
        do {
            m_Ls.add(kSets);
            kMinusOneSets = kSets;
            kSets = AprioriItemSet.mergeAllItemSets(kMinusOneSets, i, m_instances.numInstances());
            hashtable = AprioriItemSet.getHashtable(kMinusOneSets, kMinusOneSets.size());
            m_hashtables.add(hashtable);
            kSets = AprioriItemSet.pruneItemSets(kSets, hashtable);
            if (m_treatZeroAsMissing) {
                AprioriItemSet.upDateCountersTreatZeroAsMissing(kSets, m_instances);
            } else {
                AprioriItemSet.upDateCounters(kSets, m_instances);
            }
            kSets = AprioriItemSet.deleteItemSets(kSets, necSupport, m_instances.numInstances());
            i++;
        } while (kSets.size() > 0);
    }

    /**
     * Method that finds all association rules and performs significance test.
     * 
     * @throws Exception if an attribute is numeric
     */
    private void findRulesBruteForce() throws Exception {

        ArrayList<Object>[] rules;

        // Build rules
        for (int j = 1; j < m_Ls.size(); j++) {
            ArrayList<Object> currentItemSets = m_Ls.get(j);
            Enumeration<Object> enumItemSets = new WekaEnumeration<Object>(currentItemSets);
            while (enumItemSets.hasMoreElements()) {
                AprioriItemSet currentItemSet = (AprioriItemSet) enumItemSets.nextElement();
                // AprioriItemSet currentItemSet = new
                // AprioriItemSet((ItemSet)enumItemSets.nextElement());
                rules = currentItemSet.generateRulesBruteForce(m_minMetric, m_metricType, m_hashtables, j + 1,
                        m_instances.numInstances(), m_significanceLevel);
                for (int k = 0; k < rules[0].size(); k++) {
                    m_allTheRules[0].add(rules[0].get(k));
                    m_allTheRules[1].add(rules[1].get(k));
                    m_allTheRules[2].add(rules[2].get(k));

                    m_allTheRules[3].add(rules[3].get(k));
                    m_allTheRules[4].add(rules[4].get(k));
                    m_allTheRules[5].add(rules[5].get(k));
                }
            }
        }
    }

    /**
     * Method that finds all association rules.
     * 
     * @throws Exception if an attribute is numeric
     */
    private void findRulesQuickly() throws Exception {

        ArrayList<Object>[] rules;
        // Build rules
        for (int j = 1; j < m_Ls.size(); j++) {
            ArrayList<Object> currentItemSets = m_Ls.get(j);
            Enumeration<Object> enumItemSets = new WekaEnumeration<Object>(currentItemSets);
            while (enumItemSets.hasMoreElements()) {
                AprioriItemSet currentItemSet = (AprioriItemSet) enumItemSets.nextElement();
                // AprioriItemSet currentItemSet = new
                // AprioriItemSet((ItemSet)enumItemSets.nextElement());
                rules = currentItemSet.generateRules(m_minMetric, m_hashtables, j + 1);
                for (int k = 0; k < rules[0].size(); k++) {
                    m_allTheRules[0].add(rules[0].get(k));
                    m_allTheRules[1].add(rules[1].get(k));
                    m_allTheRules[2].add(rules[2].get(k));

                    if (rules.length > 3) {
                        m_allTheRules[3].add(rules[3].get(k));
                        m_allTheRules[4].add(rules[4].get(k));
                        m_allTheRules[5].add(rules[5].get(k));
                    }
                }
            }
        }
    }

    /**
     * 
     * Method that finds all large itemsets for class association rules for the
     * given set of instances.
     * 
     * @throws Exception if an attribute is numeric
     */
    private void findLargeCarItemSets() throws Exception {

        ArrayList<Object> kMinusOneSets, kSets;
        Hashtable<ItemSet, Integer> hashtable;
        int necSupport, i = 0;

        // Find large itemsets

        // minimum support
        double nextMinSupport = m_minSupport * m_instances.numInstances();
        double nextMaxSupport = m_upperBoundMinSupport * m_instances.numInstances();
        if (Math.rint(nextMinSupport) == nextMinSupport) {
            necSupport = (int) nextMinSupport;
        } else {
            necSupport = Math.round((float) (nextMinSupport + 0.5));
        }
        if (Math.rint(nextMaxSupport) == nextMaxSupport) {
        } else {
            Math.round((float) (nextMaxSupport + 0.5));
        }

        // find item sets of length one
        kSets = LabeledItemSet.singletons(m_instances, m_onlyClass);
        LabeledItemSet.upDateCounters(kSets, m_instances, m_onlyClass);

        // check if a item set of lentgh one is frequent, if not delete it
        kSets = LabeledItemSet.deleteItemSets(kSets, necSupport, m_instances.numInstances());
        if (kSets.size() == 0) {
            return;
        }
        do {
            m_Ls.add(kSets);
            kMinusOneSets = kSets;
            kSets = LabeledItemSet.mergeAllItemSets(kMinusOneSets, i, m_instances.numInstances());
            hashtable = LabeledItemSet.getHashtable(kMinusOneSets, kMinusOneSets.size());
            kSets = LabeledItemSet.pruneItemSets(kSets, hashtable);
            LabeledItemSet.upDateCounters(kSets, m_instances, m_onlyClass);
            kSets = LabeledItemSet.deleteItemSets(kSets, necSupport, m_instances.numInstances());
            i++;
        } while (kSets.size() > 0);
    }

    /**
     * Method that finds all class association rules.
     * 
     * @throws Exception if an attribute is numeric
     */
    private void findCarRulesQuickly() throws Exception {

        ArrayList<Object>[] rules;

        // Build rules
        for (int j = 0; j < m_Ls.size(); j++) {
            ArrayList<Object> currentLabeledItemSets = m_Ls.get(j);
            Enumeration<Object> enumLabeledItemSets = new WekaEnumeration<Object>(currentLabeledItemSets);
            while (enumLabeledItemSets.hasMoreElements()) {
                LabeledItemSet currentLabeledItemSet = (LabeledItemSet) enumLabeledItemSets.nextElement();
                rules = currentLabeledItemSet.generateRules(m_minMetric, false);
                for (int k = 0; k < rules[0].size(); k++) {
                    m_allTheRules[0].add(rules[0].get(k));
                    m_allTheRules[1].add(rules[1].get(k));
                    m_allTheRules[2].add(rules[2].get(k));
                }
            }
        }
    }

    /**
     * returns all the rules
     * 
     * @return all the rules
     * @see #m_allTheRules
     */
    public ArrayList<Object>[] getAllTheRules() {
        return m_allTheRules;
    }

    @Override
    public AssociationRules getAssociationRules() {
        List<AssociationRule> rules = new ArrayList<AssociationRule>();

        if (m_allTheRules != null && m_allTheRules.length > 3) {
            for (int i = 0; i < m_allTheRules[0].size(); i++) {
                // Construct the Lists for the premise and consequence
                List<Item> premise = new ArrayList<Item>();
                List<Item> consequence = new ArrayList<Item>();

                AprioriItemSet premiseSet = (AprioriItemSet) m_allTheRules[0].get(i);
                AprioriItemSet consequenceSet = (AprioriItemSet) m_allTheRules[1].get(i);
                for (int j = 0; j < m_instances.numAttributes(); j++) {
                    if (premiseSet.m_items[j] != -1) {
                        try {
                            Item newItem = new NominalItem(m_instances.attribute(j), premiseSet.m_items[j]);
                            premise.add(newItem);
                        } catch (Exception ex) {
                            ex.printStackTrace();
                        }
                    }

                    if (consequenceSet.m_items[j] != -1) {
                        try {
                            Item newItem = new NominalItem(m_instances.attribute(j), consequenceSet.m_items[j]);
                            consequence.add(newItem);
                        } catch (Exception ex) {
                            ex.printStackTrace();
                        }
                    }
                }

                // get the constituents of the metrics
                int totalTrans = premiseSet.m_totalTransactions;
                int totalSupport = consequenceSet.m_counter;
                int premiseSupport = premiseSet.m_counter;
                int consequenceSupport = consequenceSet.m_secondaryCounter;

                // map the primary metric
                DefaultAssociationRule.METRIC_TYPE metric = null;
                switch (m_metricType) {
                case CONFIDENCE:
                    metric = DefaultAssociationRule.METRIC_TYPE.CONFIDENCE;
                    break;
                case LIFT:
                    metric = DefaultAssociationRule.METRIC_TYPE.LIFT;
                    break;
                case LEVERAGE:
                    metric = DefaultAssociationRule.METRIC_TYPE.LEVERAGE;
                    break;
                case CONVICTION:
                    metric = DefaultAssociationRule.METRIC_TYPE.CONVICTION;
                    break;
                }

                DefaultAssociationRule newRule = new DefaultAssociationRule(premise, consequence, metric,
                        premiseSupport, consequenceSupport, totalSupport, totalTrans);

                rules.add(newRule);
            }
        }

        return new AssociationRules(rules, this);
    }

    /**
     * Gets a list of the names of the metrics output for each rule. This list
     * should be the same (in terms of the names and order thereof) as that
     * produced by AssociationRule.getMetricNamesForRule().
     * 
     * @return an array of the names of the metrics available for each rule
     *         learned by this producer.
     */
    @Override
    public String[] getRuleMetricNames() {
        String[] metricNames = new String[DefaultAssociationRule.TAGS_SELECTION.length];

        for (int i = 0; i < DefaultAssociationRule.TAGS_SELECTION.length; i++) {
            metricNames[i] = DefaultAssociationRule.TAGS_SELECTION[i].getReadable();
        }

        return metricNames;
    }

    /**
     * Returns true if this AssociationRulesProducer can actually produce rules.
     * Most implementing classes will always return true from this method
     * (obviously :-)). However, an implementing class that actually acts as a
     * wrapper around things that may or may not implement
     * AssociationRulesProducer will want to return false if the thing they wrap
     * can't produce rules.
     * 
     * @return true if this producer can produce rules in its current
     *         configuration
     */
    @Override
    public boolean canProduceRules() {
        return true;
    }

    /**
     * Returns the revision string.
     * 
     * @return the revision
     */
    @Override
    public String getRevision() {
        return RevisionUtils.extract("$Revision$");
    }

    /**
     * Main method.
     * 
     * @param args the commandline options
     */
    public static void main(String[] args) {
        runAssociator(new Apriori(), args);
    }
}