List of usage examples for weka.core Instances numInstances
publicint numInstances()
From source file:br.fapesp.myutils.MyUtils.java
License:Open Source License
public static Instances genGaussianDatasetWithSigmaEvolution(double[][] centers, double[][] sigmas, double[][] sigmas2, int pointsPerCluster, long seed, boolean randomize) { Instances dataset1 = genGaussianDataset(centers, sigmas, pointsPerCluster, seed, randomize, false); Instances dataset2 = genGaussianDataset(centers, sigmas2, pointsPerCluster, seed + 59387, randomize, false); for (int i = 0; i < dataset2.numInstances(); i++) dataset1.add(dataset2.instance(i)); return dataset1; }
From source file:br.fapesp.myutils.MyUtils.java
License:Open Source License
/** * Convert an Instances data set to a doubles matrix. * @param data//from ww w . j a v a 2 s. co m * @return data as a double array */ public static double[][] convertInstancesToDoubleMatrix(Instances data) { int N = data.numInstances(); int m = data.numAttributes(); double[][] ddata = new double[N][m]; double[] temp; for (int i = 0; i < N; i++) { temp = data.instance(i).toDoubleArray(); for (int j = 0; j < m; j++) ddata[i][j] = temp[j]; } return (ddata); }
From source file:br.ufrn.ia.core.clustering.EMIaProject.java
License:Open Source License
private void CVClusters() throws Exception { double CVLogLikely = -Double.MAX_VALUE; double templl, tll; boolean CVincreased = true; m_num_clusters = 1;// w ww .j av a 2s. c om int num_clusters = m_num_clusters; int i; Random cvr; Instances trainCopy; int numFolds = (m_theInstances.numInstances() < 10) ? m_theInstances.numInstances() : 10; boolean ok = true; int seed = getSeed(); int restartCount = 0; CLUSTER_SEARCH: while (CVincreased) { // theInstances.stratify(10); CVincreased = false; cvr = new Random(getSeed()); trainCopy = new Instances(m_theInstances); trainCopy.randomize(cvr); templl = 0.0; for (i = 0; i < numFolds; i++) { Instances cvTrain = trainCopy.trainCV(numFolds, i, cvr); if (num_clusters > cvTrain.numInstances()) { break CLUSTER_SEARCH; } Instances cvTest = trainCopy.testCV(numFolds, i); m_rr = new Random(seed); for (int z = 0; z < 10; z++) m_rr.nextDouble(); m_num_clusters = num_clusters; EM_Init(cvTrain); try { iterate(cvTrain, false); } catch (Exception ex) { // catch any problems - i.e. empty clusters occuring ex.printStackTrace(); // System.err.println("Restarting after CV training failure // ("+num_clusters+" clusters"); seed++; restartCount++; ok = false; if (restartCount > 5) { break CLUSTER_SEARCH; } break; } try { tll = E(cvTest, false); } catch (Exception ex) { // catch any problems - i.e. empty clusters occuring // ex.printStackTrace(); ex.printStackTrace(); // System.err.println("Restarting after CV testing failure // ("+num_clusters+" clusters"); // throw new Exception(ex); seed++; restartCount++; ok = false; if (restartCount > 5) { break CLUSTER_SEARCH; } break; } if (m_verbose) { System.out.println("# clust: " + num_clusters + " Fold: " + i + " Loglikely: " + tll); } templl += tll; } if (ok) { restartCount = 0; seed = getSeed(); templl /= (double) numFolds; if (m_verbose) { System.out.println("===================================" + "==============\n# clust: " + num_clusters + " Mean Loglikely: " + templl + "\n================================" + "================="); } if (templl > CVLogLikely) { CVLogLikely = templl; CVincreased = true; num_clusters++; } } } if (m_verbose) { System.out.println("Number of clusters: " + (num_clusters - 1)); } m_num_clusters = num_clusters - 1; }
From source file:br.ufrn.ia.core.clustering.EMIaProject.java
License:Open Source License
private double E(Instances inst, boolean change_weights) throws Exception { double loglk = 0.0, sOW = 0.0; for (int l = 0; l < inst.numInstances(); l++) { Instance in = inst.instance(l);/*from ww w.j a v a 2 s . c o m*/ loglk += in.weight() * logDensityForInstance(in); sOW += in.weight(); if (change_weights) { m_weights[l] = distributionForInstance(in); } } // reestimate priors if (change_weights) { estimate_priors(inst); } return loglk / sOW; }
From source file:br.ufrn.ia.core.clustering.EMIaProject.java
License:Open Source License
private void EM_Init(Instances inst) throws Exception { int i, j, k;//from www . ja v a 2s . c om // run k means 10 times and choose best solution SimpleKMeans bestK = null; double bestSqE = Double.MAX_VALUE; for (i = 0; i < 10; i++) { SimpleKMeans sk = new SimpleKMeans(); sk.setSeed(m_rr.nextInt()); sk.setNumClusters(m_num_clusters); sk.setDisplayStdDevs(true); sk.buildClusterer(inst); if (sk.getSquaredError() < bestSqE) { bestSqE = sk.getSquaredError(); bestK = sk; } } // initialize with best k-means solution m_num_clusters = bestK.numberOfClusters(); m_weights = new double[inst.numInstances()][m_num_clusters]; m_model = new DiscreteEstimator[m_num_clusters][m_num_attribs]; m_modelNormal = new double[m_num_clusters][m_num_attribs][3]; m_priors = new double[m_num_clusters]; Instances centers = bestK.getClusterCentroids(); Instances stdD = bestK.getClusterStandardDevs(); double[][][] nominalCounts = bestK.getClusterNominalCounts(); double[] clusterSizes = bestK.getClusterSizes(); for (i = 0; i < m_num_clusters; i++) { Instance center = centers.instance(i); for (j = 0; j < m_num_attribs; j++) { if (inst.attribute(j).isNominal()) { m_model[i][j] = new DiscreteEstimator(m_theInstances.attribute(j).numValues(), true); for (k = 0; k < inst.attribute(j).numValues(); k++) { m_model[i][j].addValue(k, nominalCounts[i][j][k]); } } else { double minStdD = (m_minStdDevPerAtt != null) ? m_minStdDevPerAtt[j] : m_minStdDev; double mean = (center.isMissing(j)) ? inst.meanOrMode(j) : center.value(j); m_modelNormal[i][j][0] = mean; double stdv = (stdD.instance(i).isMissing(j)) ? ((m_maxValues[j] - m_minValues[j]) / (2 * m_num_clusters)) : stdD.instance(i).value(j); if (stdv < minStdD) { stdv = inst.attributeStats(j).numericStats.stdDev; if (Double.isInfinite(stdv)) { stdv = minStdD; } if (stdv < minStdD) { stdv = minStdD; } } if (stdv <= 0) { stdv = m_minStdDev; } m_modelNormal[i][j][1] = stdv; m_modelNormal[i][j][2] = 1.0; } } } for (j = 0; j < m_num_clusters; j++) { // m_priors[j] += 1.0; m_priors[j] = clusterSizes[j]; } Utils.normalize(m_priors); }
From source file:br.ufrn.ia.core.clustering.EMIaProject.java
License:Open Source License
private void EM_Report(Instances inst) { int i, j, l, m; System.out.println("======================================"); for (j = 0; j < m_num_clusters; j++) { for (i = 0; i < m_num_attribs; i++) { System.out.println("Clust: " + j + " att: " + i + "\n"); if (m_theInstances.attribute(i).isNominal()) { if (m_model[j][i] != null) { System.out.println(m_model[j][i].toString()); }/*from w ww . j a v a 2 s . c o m*/ } else { System.out.println( "Normal Distribution. Mean = " + Utils.doubleToString(m_modelNormal[j][i][0], 8, 4) + " StandardDev = " + Utils.doubleToString(m_modelNormal[j][i][1], 8, 4) + " WeightSum = " + Utils.doubleToString(m_modelNormal[j][i][2], 8, 4)); } } } for (l = 0; l < inst.numInstances(); l++) { m = Utils.maxIndex(m_weights[l]); System.out.print("Inst " + Utils.doubleToString((double) l, 5, 0) + " Class " + m + "\t"); for (j = 0; j < m_num_clusters; j++) { System.out.print(Utils.doubleToString(m_weights[l][j], 7, 5) + " "); } System.out.println(); } }
From source file:br.ufrn.ia.core.clustering.EMIaProject.java
License:Open Source License
private void estimate_priors(Instances inst) throws Exception { for (int i = 0; i < m_num_clusters; i++) { m_priors[i] = 0.0;// w ww. ja v a 2s. c o m } for (int i = 0; i < inst.numInstances(); i++) { for (int j = 0; j < m_num_clusters; j++) { m_priors[j] += inst.instance(i).weight() * m_weights[i][j]; } } Utils.normalize(m_priors); }
From source file:br.ufrn.ia.core.clustering.EMIaProject.java
License:Open Source License
private void M(Instances inst) throws Exception { int i, j, l;//from w w w .java 2 s . c o m new_estimators(); for (i = 0; i < m_num_clusters; i++) { for (j = 0; j < m_num_attribs; j++) { for (l = 0; l < inst.numInstances(); l++) { Instance in = inst.instance(l); if (!in.isMissing(j)) { if (inst.attribute(j).isNominal()) { m_model[i][j].addValue(in.value(j), in.weight() * m_weights[l][i]); } else { m_modelNormal[i][j][0] += (in.value(j) * in.weight() * m_weights[l][i]); m_modelNormal[i][j][2] += in.weight() * m_weights[l][i]; m_modelNormal[i][j][1] += (in.value(j) * in.value(j) * in.weight() * m_weights[l][i]); } } } } } // calcualte mean and std deviation for numeric attributes for (j = 0; j < m_num_attribs; j++) { if (!inst.attribute(j).isNominal()) { for (i = 0; i < m_num_clusters; i++) { if (m_modelNormal[i][j][2] <= 0) { m_modelNormal[i][j][1] = Double.MAX_VALUE; // m_modelNormal[i][j][0] = 0; m_modelNormal[i][j][0] = m_minStdDev; } else { // variance m_modelNormal[i][j][1] = (m_modelNormal[i][j][1] - (m_modelNormal[i][j][0] * m_modelNormal[i][j][0] / m_modelNormal[i][j][2])) / (m_modelNormal[i][j][2]); if (m_modelNormal[i][j][1] < 0) { m_modelNormal[i][j][1] = 0; } // std dev double minStdD = (m_minStdDevPerAtt != null) ? m_minStdDevPerAtt[j] : m_minStdDev; m_modelNormal[i][j][1] = Math.sqrt(m_modelNormal[i][j][1]); if ((m_modelNormal[i][j][1] <= minStdD)) { m_modelNormal[i][j][1] = inst.attributeStats(j).numericStats.stdDev; if ((m_modelNormal[i][j][1] <= minStdD)) { m_modelNormal[i][j][1] = minStdD; } } if ((m_modelNormal[i][j][1] <= 0)) { m_modelNormal[i][j][1] = m_minStdDev; } if (Double.isInfinite(m_modelNormal[i][j][1])) { m_modelNormal[i][j][1] = m_minStdDev; } // mean m_modelNormal[i][j][0] /= m_modelNormal[i][j][2]; } } } } }
From source file:br.ufrn.ia.core.clustering.SimpleKMeansIaProject.java
License:Open Source License
public void buildClusterer(Instances data) throws Exception { // can clusterer handle the data? getCapabilities().testWithFail(data); m_Iterations = 0;/*from w ww . j a v a2s . co m*/ m_ReplaceMissingFilter = new ReplaceMissingValues(); Instances instances = new Instances(data); instances.setClassIndex(-1); if (!m_dontReplaceMissing) { m_ReplaceMissingFilter.setInputFormat(instances); instances = Filter.useFilter(instances, m_ReplaceMissingFilter); } m_FullMissingCounts = new int[instances.numAttributes()]; if (m_displayStdDevs) { m_FullStdDevs = new double[instances.numAttributes()]; } m_FullNominalCounts = new int[instances.numAttributes()][0]; m_FullMeansOrMediansOrModes = moveCentroid(0, instances, false); for (int i = 0; i < instances.numAttributes(); i++) { m_FullMissingCounts[i] = instances.attributeStats(i).missingCount; if (instances.attribute(i).isNumeric()) { if (m_displayStdDevs) { m_FullStdDevs[i] = Math.sqrt(instances.variance(i)); } if (m_FullMissingCounts[i] == instances.numInstances()) { m_FullMeansOrMediansOrModes[i] = Double.NaN; // mark missing // as mean } } else { m_FullNominalCounts[i] = instances.attributeStats(i).nominalCounts; if (m_FullMissingCounts[i] > m_FullNominalCounts[i][Utils.maxIndex(m_FullNominalCounts[i])]) { m_FullMeansOrMediansOrModes[i] = -1; // mark missing as most // common value } } } m_ClusterCentroids = new Instances(instances, m_NumClusters); int[] clusterAssignments = new int[instances.numInstances()]; if (m_PreserveOrder) m_Assignments = clusterAssignments; m_DistanceFunction.setInstances(instances); Random RandomO = new Random(getSeed()); int instIndex; HashMap initC = new HashMap(); DecisionTableHashKey hk = null; Instances initInstances = null; if (m_PreserveOrder) initInstances = new Instances(instances); else initInstances = instances; for (int j = initInstances.numInstances() - 1; j >= 0; j--) { instIndex = RandomO.nextInt(j + 1); hk = new DecisionTableHashKey(initInstances.instance(instIndex), initInstances.numAttributes(), true); if (!initC.containsKey(hk)) { m_ClusterCentroids.add(initInstances.instance(instIndex)); initC.put(hk, null); } initInstances.swap(j, instIndex); if (m_ClusterCentroids.numInstances() == m_NumClusters) { break; } } m_NumClusters = m_ClusterCentroids.numInstances(); // removing reference initInstances = null; int i; boolean converged = false; int emptyClusterCount; Instances[] tempI = new Instances[m_NumClusters]; m_squaredErrors = new double[m_NumClusters]; m_ClusterNominalCounts = new int[m_NumClusters][instances.numAttributes()][0]; m_ClusterMissingCounts = new int[m_NumClusters][instances.numAttributes()]; while (!converged) { emptyClusterCount = 0; m_Iterations++; converged = true; for (i = 0; i < instances.numInstances(); i++) { Instance toCluster = instances.instance(i); int newC = clusterProcessedInstance(toCluster, true); if (newC != clusterAssignments[i]) { converged = false; } clusterAssignments[i] = newC; } // update centroids m_ClusterCentroids = new Instances(instances, m_NumClusters); for (i = 0; i < m_NumClusters; i++) { tempI[i] = new Instances(instances, 0); } for (i = 0; i < instances.numInstances(); i++) { tempI[clusterAssignments[i]].add(instances.instance(i)); } for (i = 0; i < m_NumClusters; i++) { if (tempI[i].numInstances() == 0) { // empty cluster emptyClusterCount++; } else { moveCentroid(i, tempI[i], true); } } if (emptyClusterCount > 0) { m_NumClusters -= emptyClusterCount; if (converged) { Instances[] t = new Instances[m_NumClusters]; int index = 0; for (int k = 0; k < tempI.length; k++) { if (tempI[k].numInstances() > 0) { t[index++] = tempI[k]; } } tempI = t; } else { tempI = new Instances[m_NumClusters]; } } if (m_Iterations == m_MaxIterations) converged = true; if (!converged) { m_squaredErrors = new double[m_NumClusters]; m_ClusterNominalCounts = new int[m_NumClusters][instances.numAttributes()][0]; } } if (m_displayStdDevs) { m_ClusterStdDevs = new Instances(instances, m_NumClusters); } m_ClusterSizes = new int[m_NumClusters]; for (i = 0; i < m_NumClusters; i++) { if (m_displayStdDevs) { double[] vals2 = new double[instances.numAttributes()]; for (int j = 0; j < instances.numAttributes(); j++) { if (instances.attribute(j).isNumeric()) { vals2[j] = Math.sqrt(tempI[i].variance(j)); } else { vals2[j] = Utils.missingValue(); } } m_ClusterStdDevs.add(new DenseInstance(1.0, vals2)); } m_ClusterSizes[i] = tempI[i].numInstances(); } }
From source file:br.ufrn.ia.core.clustering.SimpleKMeansIaProject.java
License:Open Source License
protected double[] moveCentroid(int centroidIndex, Instances members, boolean updateClusterInfo) { double[] vals = new double[members.numAttributes()]; // used only for Manhattan Distance Instances sortedMembers = null;//from w w w.j a va 2 s. co m int middle = 0; boolean dataIsEven = false; if (m_DistanceFunction instanceof ManhattanDistance) { middle = (members.numInstances() - 1) / 2; dataIsEven = ((members.numInstances() % 2) == 0); if (m_PreserveOrder) { sortedMembers = members; } else { sortedMembers = new Instances(members); } } for (int j = 0; j < members.numAttributes(); j++) { // in case of Euclidian distance the centroid is the mean point // in case of Manhattan distance the centroid is the median point // in both cases, if the attribute is nominal, the centroid is the // mode if (m_DistanceFunction instanceof EuclideanDistance || members.attribute(j).isNominal()) { vals[j] = members.meanOrMode(j); } else if (m_DistanceFunction instanceof ManhattanDistance) { // singleton special case if (members.numInstances() == 1) { vals[j] = members.instance(0).value(j); } else { sortedMembers.kthSmallestValue(j, middle + 1); vals[j] = sortedMembers.instance(middle).value(j); if (dataIsEven) { sortedMembers.kthSmallestValue(j, middle + 2); vals[j] = (vals[j] + sortedMembers.instance(middle + 1).value(j)) / 2; } } } if (updateClusterInfo) { m_ClusterMissingCounts[centroidIndex][j] = members.attributeStats(j).missingCount; m_ClusterNominalCounts[centroidIndex][j] = members.attributeStats(j).nominalCounts; if (members.attribute(j).isNominal()) { if (m_ClusterMissingCounts[centroidIndex][j] > m_ClusterNominalCounts[centroidIndex][j][Utils .maxIndex(m_ClusterNominalCounts[centroidIndex][j])]) { vals[j] = Utils.missingValue(); // mark mode as missing } } else { if (m_ClusterMissingCounts[centroidIndex][j] == members.numInstances()) { vals[j] = Utils.missingValue(); // mark mean as missing } } } } if (updateClusterInfo) m_ClusterCentroids.add(new DenseInstance(1.0, vals)); return vals; }