Java tutorial
/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* * SimpleKMeans.java * Copyright (C) 2000 University of Waikato, Hamilton, New Zealand * */ package br.ufrn.ia.core.clustering; import java.util.Enumeration; import java.util.HashMap; import java.util.Random; import java.util.Vector; import weka.classifiers.rules.DecisionTableHashKey; import weka.clusterers.NumberOfClustersRequestable; import weka.clusterers.RandomizableClusterer; import weka.core.Attribute; import weka.core.Capabilities; import weka.core.Capabilities.Capability; import weka.core.DenseInstance; import weka.core.DistanceFunction; import weka.core.EuclideanDistance; import weka.core.Instance; import weka.core.Instances; import weka.core.ManhattanDistance; import weka.core.Option; import weka.core.RevisionUtils; import weka.core.Utils; import weka.core.WeightedInstancesHandler; import weka.filters.Filter; import weka.filters.unsupervised.attribute.ReplaceMissingValues; public class SimpleKMeansIaProject extends RandomizableClusterer implements NumberOfClustersRequestable, WeightedInstancesHandler { private static final long serialVersionUID = 8850016179481731406L; private ReplaceMissingValues m_ReplaceMissingFilter; private int m_NumClusters = 2; private Instances m_ClusterCentroids; private Instances m_ClusterStdDevs; private int[][][] m_ClusterNominalCounts; private int[][] m_ClusterMissingCounts; private double[] m_FullMeansOrMediansOrModes; private double[] m_FullStdDevs; private int[][] m_FullNominalCounts; private int[] m_FullMissingCounts; private boolean m_displayStdDevs; private boolean m_dontReplaceMissing = false; private int[] m_ClusterSizes; private int m_MaxIterations = 500; private int m_Iterations = 0; private double[] m_squaredErrors; private boolean m_PreserveOrder = false; protected int[] m_Assignments = null; protected DistanceFunction m_DistanceFunction = new EuclideanDistance(); //--- CEPHAS BARRETO --// public void setOptions(boolean m_displayStdDevs, boolean m_dontReplaceMissing, int m_NumClusters, int m_MaxIterations, DistanceFunction m_DistanceFunction, boolean m_PreserveOrder, int m_Seed) throws Exception { this.m_displayStdDevs = m_displayStdDevs; //default false - missing values this.m_dontReplaceMissing = m_dontReplaceMissing; //default false this.m_NumClusters = m_NumClusters; //default 2 this.m_MaxIterations = m_MaxIterations; //default 500 this.m_DistanceFunction = m_DistanceFunction; //default Euclidian Distance this.m_PreserveOrder = m_PreserveOrder; //default false this.m_Seed = m_Seed; //default 1 } //--- CEPHAS BARRETO --// public SimpleKMeansIaProject() { super(); m_SeedDefault = 10; setSeed(m_SeedDefault); } public String globalInfo() { return "Cluster data using the k means algorithm. Can use either " + "the Euclidean distance (default) or the Manhattan distance." + " If the Manhattan distance is used, then centroids are computed " + "as the component-wise median rather than mean."; } public Capabilities getCapabilities() { Capabilities result = super.getCapabilities(); result.disableAll(); result.enable(Capability.NO_CLASS); // attributes result.enable(Capability.NOMINAL_ATTRIBUTES); result.enable(Capability.NUMERIC_ATTRIBUTES); result.enable(Capability.MISSING_VALUES); return result; } public void buildClusterer(Instances data) throws Exception { // can clusterer handle the data? getCapabilities().testWithFail(data); m_Iterations = 0; m_ReplaceMissingFilter = new ReplaceMissingValues(); Instances instances = new Instances(data); instances.setClassIndex(-1); if (!m_dontReplaceMissing) { m_ReplaceMissingFilter.setInputFormat(instances); instances = Filter.useFilter(instances, m_ReplaceMissingFilter); } m_FullMissingCounts = new int[instances.numAttributes()]; if (m_displayStdDevs) { m_FullStdDevs = new double[instances.numAttributes()]; } m_FullNominalCounts = new int[instances.numAttributes()][0]; m_FullMeansOrMediansOrModes = moveCentroid(0, instances, false); for (int i = 0; i < instances.numAttributes(); i++) { m_FullMissingCounts[i] = instances.attributeStats(i).missingCount; if (instances.attribute(i).isNumeric()) { if (m_displayStdDevs) { m_FullStdDevs[i] = Math.sqrt(instances.variance(i)); } if (m_FullMissingCounts[i] == instances.numInstances()) { m_FullMeansOrMediansOrModes[i] = Double.NaN; // mark missing // as mean } } else { m_FullNominalCounts[i] = instances.attributeStats(i).nominalCounts; if (m_FullMissingCounts[i] > m_FullNominalCounts[i][Utils.maxIndex(m_FullNominalCounts[i])]) { m_FullMeansOrMediansOrModes[i] = -1; // mark missing as most // common value } } } m_ClusterCentroids = new Instances(instances, m_NumClusters); int[] clusterAssignments = new int[instances.numInstances()]; if (m_PreserveOrder) m_Assignments = clusterAssignments; m_DistanceFunction.setInstances(instances); Random RandomO = new Random(getSeed()); int instIndex; HashMap initC = new HashMap(); DecisionTableHashKey hk = null; Instances initInstances = null; if (m_PreserveOrder) initInstances = new Instances(instances); else initInstances = instances; for (int j = initInstances.numInstances() - 1; j >= 0; j--) { instIndex = RandomO.nextInt(j + 1); hk = new DecisionTableHashKey(initInstances.instance(instIndex), initInstances.numAttributes(), true); if (!initC.containsKey(hk)) { m_ClusterCentroids.add(initInstances.instance(instIndex)); initC.put(hk, null); } initInstances.swap(j, instIndex); if (m_ClusterCentroids.numInstances() == m_NumClusters) { break; } } m_NumClusters = m_ClusterCentroids.numInstances(); // removing reference initInstances = null; int i; boolean converged = false; int emptyClusterCount; Instances[] tempI = new Instances[m_NumClusters]; m_squaredErrors = new double[m_NumClusters]; m_ClusterNominalCounts = new int[m_NumClusters][instances.numAttributes()][0]; m_ClusterMissingCounts = new int[m_NumClusters][instances.numAttributes()]; while (!converged) { emptyClusterCount = 0; m_Iterations++; converged = true; for (i = 0; i < instances.numInstances(); i++) { Instance toCluster = instances.instance(i); int newC = clusterProcessedInstance(toCluster, true); if (newC != clusterAssignments[i]) { converged = false; } clusterAssignments[i] = newC; } // update centroids m_ClusterCentroids = new Instances(instances, m_NumClusters); for (i = 0; i < m_NumClusters; i++) { tempI[i] = new Instances(instances, 0); } for (i = 0; i < instances.numInstances(); i++) { tempI[clusterAssignments[i]].add(instances.instance(i)); } for (i = 0; i < m_NumClusters; i++) { if (tempI[i].numInstances() == 0) { // empty cluster emptyClusterCount++; } else { moveCentroid(i, tempI[i], true); } } if (emptyClusterCount > 0) { m_NumClusters -= emptyClusterCount; if (converged) { Instances[] t = new Instances[m_NumClusters]; int index = 0; for (int k = 0; k < tempI.length; k++) { if (tempI[k].numInstances() > 0) { t[index++] = tempI[k]; } } tempI = t; } else { tempI = new Instances[m_NumClusters]; } } if (m_Iterations == m_MaxIterations) converged = true; if (!converged) { m_squaredErrors = new double[m_NumClusters]; m_ClusterNominalCounts = new int[m_NumClusters][instances.numAttributes()][0]; } } if (m_displayStdDevs) { m_ClusterStdDevs = new Instances(instances, m_NumClusters); } m_ClusterSizes = new int[m_NumClusters]; for (i = 0; i < m_NumClusters; i++) { if (m_displayStdDevs) { double[] vals2 = new double[instances.numAttributes()]; for (int j = 0; j < instances.numAttributes(); j++) { if (instances.attribute(j).isNumeric()) { vals2[j] = Math.sqrt(tempI[i].variance(j)); } else { vals2[j] = Utils.missingValue(); } } m_ClusterStdDevs.add(new DenseInstance(1.0, vals2)); } m_ClusterSizes[i] = tempI[i].numInstances(); } } protected double[] moveCentroid(int centroidIndex, Instances members, boolean updateClusterInfo) { double[] vals = new double[members.numAttributes()]; // used only for Manhattan Distance Instances sortedMembers = null; int middle = 0; boolean dataIsEven = false; if (m_DistanceFunction instanceof ManhattanDistance) { middle = (members.numInstances() - 1) / 2; dataIsEven = ((members.numInstances() % 2) == 0); if (m_PreserveOrder) { sortedMembers = members; } else { sortedMembers = new Instances(members); } } for (int j = 0; j < members.numAttributes(); j++) { // in case of Euclidian distance the centroid is the mean point // in case of Manhattan distance the centroid is the median point // in both cases, if the attribute is nominal, the centroid is the // mode if (m_DistanceFunction instanceof EuclideanDistance || members.attribute(j).isNominal()) { vals[j] = members.meanOrMode(j); } else if (m_DistanceFunction instanceof ManhattanDistance) { // singleton special case if (members.numInstances() == 1) { vals[j] = members.instance(0).value(j); } else { sortedMembers.kthSmallestValue(j, middle + 1); vals[j] = sortedMembers.instance(middle).value(j); if (dataIsEven) { sortedMembers.kthSmallestValue(j, middle + 2); vals[j] = (vals[j] + sortedMembers.instance(middle + 1).value(j)) / 2; } } } if (updateClusterInfo) { m_ClusterMissingCounts[centroidIndex][j] = members.attributeStats(j).missingCount; m_ClusterNominalCounts[centroidIndex][j] = members.attributeStats(j).nominalCounts; if (members.attribute(j).isNominal()) { if (m_ClusterMissingCounts[centroidIndex][j] > m_ClusterNominalCounts[centroidIndex][j][Utils .maxIndex(m_ClusterNominalCounts[centroidIndex][j])]) { vals[j] = Utils.missingValue(); // mark mode as missing } } else { if (m_ClusterMissingCounts[centroidIndex][j] == members.numInstances()) { vals[j] = Utils.missingValue(); // mark mean as missing } } } } if (updateClusterInfo) m_ClusterCentroids.add(new DenseInstance(1.0, vals)); return vals; } private int clusterProcessedInstance(Instance instance, boolean updateErrors) { double minDist = Integer.MAX_VALUE; int bestCluster = 0; for (int i = 0; i < m_NumClusters; i++) { double dist = m_DistanceFunction.distance(instance, m_ClusterCentroids.instance(i)); if (dist < minDist) { minDist = dist; bestCluster = i; } } if (updateErrors) { if (m_DistanceFunction instanceof EuclideanDistance) { // Euclidean distance to Squared Euclidean distance minDist *= minDist; } m_squaredErrors[bestCluster] += minDist; } return bestCluster; } public int clusterInstance(Instance instance) throws Exception { Instance inst = null; if (!m_dontReplaceMissing) { m_ReplaceMissingFilter.input(instance); m_ReplaceMissingFilter.batchFinished(); inst = m_ReplaceMissingFilter.output(); } else { inst = instance; } return clusterProcessedInstance(inst, false); } public int numberOfClusters() throws Exception { return m_NumClusters; } public Enumeration listOptions() { Vector result = new Vector(); result.addElement(new Option("\tnumber of clusters.\n" + "\t(default 2).", "N", 1, "-N <num>")); result.addElement(new Option("\tDisplay std. deviations for centroids.\n", "V", 0, "-V")); result.addElement(new Option("\tReplace missing values with mean/mode.\n", "M", 0, "-M")); result.add(new Option("\tDistance function to use.\n" + "\t(default: weka.core.EuclideanDistance)", "A", 1, "-A <classname and options>")); result.add(new Option("\tMaximum number of iterations.\n", "I", 1, "-I <num>")); result.addElement(new Option("\tPreserve order of instances.\n", "O", 0, "-O")); Enumeration en = super.listOptions(); while (en.hasMoreElements()) result.addElement(en.nextElement()); return result.elements(); } public String numClustersTipText() { return "set number of clusters"; } public void setNumClusters(int n) throws Exception { if (n <= 0) { throw new Exception("Number of clusters must be > 0"); } m_NumClusters = n; } public int getNumClusters() { return m_NumClusters; } public String maxIterationsTipText() { return "set maximum number of iterations"; } public void setMaxIterations(int n) throws Exception { if (n <= 0) { throw new Exception("Maximum number of iterations must be > 0"); } m_MaxIterations = n; } public int getMaxIterations() { return m_MaxIterations; } public String displayStdDevsTipText() { return "Display std deviations of numeric attributes " + "and counts of nominal attributes."; } public void setDisplayStdDevs(boolean stdD) { m_displayStdDevs = stdD; } public boolean getDisplayStdDevs() { return m_displayStdDevs; } public String dontReplaceMissingValuesTipText() { return "Replace missing values globally with mean/mode."; } public void setDontReplaceMissingValues(boolean r) { m_dontReplaceMissing = r; } public boolean getDontReplaceMissingValues() { return m_dontReplaceMissing; } public String distanceFunctionTipText() { return "The distance function to use for instances comparison " + "(default: weka.core.EuclideanDistance). "; } public DistanceFunction getDistanceFunction() { return m_DistanceFunction; } public void setDistanceFunction(DistanceFunction distanceFunction) { m_DistanceFunction = distanceFunction; } public String preserveInstancesOrderTipText() { return "Preserve order of instances."; } public void setPreserveInstancesOrder(boolean r) { m_PreserveOrder = r; } public boolean getPreserveInstancesOrder() { return m_PreserveOrder; } public void setOptions(String[] options) throws Exception { m_displayStdDevs = Utils.getFlag("V", options); m_dontReplaceMissing = Utils.getFlag("M", options); String optionString = Utils.getOption('N', options); if (optionString.length() != 0) { setNumClusters(Integer.parseInt(optionString)); } optionString = Utils.getOption("I", options); if (optionString.length() != 0) { setMaxIterations(Integer.parseInt(optionString)); } String distFunctionClass = Utils.getOption('A', options); if (distFunctionClass.length() != 0) { String distFunctionClassSpec[] = Utils.splitOptions(distFunctionClass); if (distFunctionClassSpec.length == 0) { throw new Exception("Invalid DistanceFunction specification string."); } String className = distFunctionClassSpec[0]; distFunctionClassSpec[0] = ""; setDistanceFunction( (DistanceFunction) Utils.forName(DistanceFunction.class, className, distFunctionClassSpec)); } else { setDistanceFunction(new EuclideanDistance()); } m_PreserveOrder = Utils.getFlag("O", options); super.setOptions(options); } public String[] getOptions() { int i; Vector result; String[] options; result = new Vector(); if (m_displayStdDevs) { result.add("-V"); } if (m_dontReplaceMissing) { result.add("-M"); } result.add("-N"); result.add("" + getNumClusters()); result.add("-A"); result.add( (m_DistanceFunction.getClass().getName() + " " + Utils.joinOptions(m_DistanceFunction.getOptions())) .trim()); result.add("-I"); result.add("" + getMaxIterations()); if (m_PreserveOrder) { result.add("-O"); } options = super.getOptions(); for (i = 0; i < options.length; i++) result.add(options[i]); return (String[]) result.toArray(new String[result.size()]); } public String toString() { if (m_ClusterCentroids == null) { return "No clusterer built yet!"; } int maxWidth = 0; int maxAttWidth = 0; boolean containsNumeric = false; for (int i = 0; i < m_NumClusters; i++) { for (int j = 0; j < m_ClusterCentroids.numAttributes(); j++) { if (m_ClusterCentroids.attribute(j).name().length() > maxAttWidth) { maxAttWidth = m_ClusterCentroids.attribute(j).name().length(); } if (m_ClusterCentroids.attribute(j).isNumeric()) { containsNumeric = true; double width = Math.log(Math.abs(m_ClusterCentroids.instance(i).value(j))) / Math.log(10.0); // System.err.println(m_ClusterCentroids.instance(i).value(j)+" // "+width); if (width < 0) { width = 1; } // decimal + # decimal places + 1 width += 6.0; if ((int) width > maxWidth) { maxWidth = (int) width; } } } } for (int i = 0; i < m_ClusterCentroids.numAttributes(); i++) { if (m_ClusterCentroids.attribute(i).isNominal()) { Attribute a = m_ClusterCentroids.attribute(i); for (int j = 0; j < m_ClusterCentroids.numInstances(); j++) { String val = a.value((int) m_ClusterCentroids.instance(j).value(i)); if (val.length() > maxWidth) { maxWidth = val.length(); } } for (int j = 0; j < a.numValues(); j++) { String val = a.value(j) + " "; if (val.length() > maxAttWidth) { maxAttWidth = val.length(); } } } } if (m_displayStdDevs) { // check for maximum width of maximum frequency count for (int i = 0; i < m_ClusterCentroids.numAttributes(); i++) { if (m_ClusterCentroids.attribute(i).isNominal()) { int maxV = Utils.maxIndex(m_FullNominalCounts[i]); /* * int percent = (int)((double)m_FullNominalCounts[i][maxV] * / Utils.sum(m_ClusterSizes) * 100.0); */ int percent = 6; // max percent width (100%) String nomV = "" + m_FullNominalCounts[i][maxV]; // + " (" + percent + "%)"; if (nomV.length() + percent > maxWidth) { maxWidth = nomV.length() + 1; } } } } // check for size of cluster sizes for (int i = 0; i < m_ClusterSizes.length; i++) { String size = "(" + m_ClusterSizes[i] + ")"; if (size.length() > maxWidth) { maxWidth = size.length(); } } if (m_displayStdDevs && maxAttWidth < "missing".length()) { maxAttWidth = "missing".length(); } String plusMinus = "+/-"; maxAttWidth += 2; if (m_displayStdDevs && containsNumeric) { maxWidth += plusMinus.length(); } if (maxAttWidth < "Attribute".length() + 2) { maxAttWidth = "Attribute".length() + 2; } if (maxWidth < "Full Data".length()) { maxWidth = "Full Data".length() + 1; } if (maxWidth < "missing".length()) { maxWidth = "missing".length() + 1; } StringBuffer temp = new StringBuffer(); temp.append("\nkMeans\n======\n"); temp.append("\nNumber of iterations: " + m_Iterations + "\n"); if (m_DistanceFunction instanceof EuclideanDistance) { temp.append("Within cluster sum of squared errors: " + Utils.sum(m_squaredErrors)); } else { temp.append("Sum of within cluster distances: " + Utils.sum(m_squaredErrors)); } if (!m_dontReplaceMissing) { temp.append("\nMissing values globally replaced with mean/mode"); } temp.append("\n\nCluster centroids:\n"); temp.append(pad("Cluster#", " ", (maxAttWidth + (maxWidth * 2 + 2)) - "Cluster#".length(), true)); temp.append("\n"); temp.append(pad("Attribute", " ", maxAttWidth - "Attribute".length(), false)); temp.append(pad("Full Data", " ", maxWidth + 1 - "Full Data".length(), true)); // cluster numbers for (int i = 0; i < m_NumClusters; i++) { String clustNum = "" + i; temp.append(pad(clustNum, " ", maxWidth + 1 - clustNum.length(), true)); } temp.append("\n"); // cluster sizes String cSize = "(" + Utils.sum(m_ClusterSizes) + ")"; temp.append(pad(cSize, " ", maxAttWidth + maxWidth + 1 - cSize.length(), true)); for (int i = 0; i < m_NumClusters; i++) { cSize = "(" + m_ClusterSizes[i] + ")"; temp.append(pad(cSize, " ", maxWidth + 1 - cSize.length(), true)); } temp.append("\n"); temp.append(pad("", "=", maxAttWidth + (maxWidth * (m_ClusterCentroids.numInstances() + 1) + m_ClusterCentroids.numInstances() + 1), true)); temp.append("\n"); for (int i = 0; i < m_ClusterCentroids.numAttributes(); i++) { String attName = m_ClusterCentroids.attribute(i).name(); temp.append(attName); for (int j = 0; j < maxAttWidth - attName.length(); j++) { temp.append(" "); } String strVal; String valMeanMode; // full data if (m_ClusterCentroids.attribute(i).isNominal()) { if (m_FullMeansOrMediansOrModes[i] == -1) { // missing valMeanMode = pad("missing", " ", maxWidth + 1 - "missing".length(), true); } else { valMeanMode = pad( (strVal = m_ClusterCentroids.attribute(i).value((int) m_FullMeansOrMediansOrModes[i])), " ", maxWidth + 1 - strVal.length(), true); } } else { if (Double.isNaN(m_FullMeansOrMediansOrModes[i])) { valMeanMode = pad("missing", " ", maxWidth + 1 - "missing".length(), true); } else { valMeanMode = pad( (strVal = Utils.doubleToString(m_FullMeansOrMediansOrModes[i], maxWidth, 4).trim()), " ", maxWidth + 1 - strVal.length(), true); } } temp.append(valMeanMode); for (int j = 0; j < m_NumClusters; j++) { if (m_ClusterCentroids.attribute(i).isNominal()) { if (m_ClusterCentroids.instance(j).isMissing(i)) { valMeanMode = pad("missing", " ", maxWidth + 1 - "missing".length(), true); } else { valMeanMode = pad( (strVal = m_ClusterCentroids.attribute(i) .value((int) m_ClusterCentroids.instance(j).value(i))), " ", maxWidth + 1 - strVal.length(), true); } } else { if (m_ClusterCentroids.instance(j).isMissing(i)) { valMeanMode = pad("missing", " ", maxWidth + 1 - "missing".length(), true); } else { valMeanMode = pad((strVal = Utils .doubleToString(m_ClusterCentroids.instance(j).value(i), maxWidth, 4).trim()), " ", maxWidth + 1 - strVal.length(), true); } } temp.append(valMeanMode); } temp.append("\n"); if (m_displayStdDevs) { // Std devs/max nominal String stdDevVal = ""; if (m_ClusterCentroids.attribute(i).isNominal()) { // Do the values of the nominal attribute Attribute a = m_ClusterCentroids.attribute(i); for (int j = 0; j < a.numValues(); j++) { // full data String val = " " + a.value(j); temp.append(pad(val, " ", maxAttWidth + 1 - val.length(), false)); int count = m_FullNominalCounts[i][j]; int percent = (int) ((double) m_FullNominalCounts[i][j] / Utils.sum(m_ClusterSizes) * 100.0); String percentS = "" + percent + "%)"; percentS = pad(percentS, " ", 5 - percentS.length(), true); stdDevVal = "" + count + " (" + percentS; stdDevVal = pad(stdDevVal, " ", maxWidth + 1 - stdDevVal.length(), true); temp.append(stdDevVal); // Clusters for (int k = 0; k < m_NumClusters; k++) { count = m_ClusterNominalCounts[k][i][j]; percent = (int) ((double) m_ClusterNominalCounts[k][i][j] / m_ClusterSizes[k] * 100.0); percentS = "" + percent + "%)"; percentS = pad(percentS, " ", 5 - percentS.length(), true); stdDevVal = "" + count + " (" + percentS; stdDevVal = pad(stdDevVal, " ", maxWidth + 1 - stdDevVal.length(), true); temp.append(stdDevVal); } temp.append("\n"); } // missing (if any) if (m_FullMissingCounts[i] > 0) { // Full data temp.append(pad(" missing", " ", maxAttWidth + 1 - " missing".length(), false)); int count = m_FullMissingCounts[i]; int percent = (int) ((double) m_FullMissingCounts[i] / Utils.sum(m_ClusterSizes) * 100.0); String percentS = "" + percent + "%)"; percentS = pad(percentS, " ", 5 - percentS.length(), true); stdDevVal = "" + count + " (" + percentS; stdDevVal = pad(stdDevVal, " ", maxWidth + 1 - stdDevVal.length(), true); temp.append(stdDevVal); // Clusters for (int k = 0; k < m_NumClusters; k++) { count = m_ClusterMissingCounts[k][i]; percent = (int) ((double) m_ClusterMissingCounts[k][i] / m_ClusterSizes[k] * 100.0); percentS = "" + percent + "%)"; percentS = pad(percentS, " ", 5 - percentS.length(), true); stdDevVal = "" + count + " (" + percentS; stdDevVal = pad(stdDevVal, " ", maxWidth + 1 - stdDevVal.length(), true); temp.append(stdDevVal); } temp.append("\n"); } temp.append("\n"); } else { // Full data if (Double.isNaN(m_FullMeansOrMediansOrModes[i])) { stdDevVal = pad("--", " ", maxAttWidth + maxWidth + 1 - 2, true); } else { stdDevVal = pad( (strVal = plusMinus + Utils.doubleToString(m_FullStdDevs[i], maxWidth, 4).trim()), " ", maxWidth + maxAttWidth + 1 - strVal.length(), true); } temp.append(stdDevVal); // Clusters for (int j = 0; j < m_NumClusters; j++) { if (m_ClusterCentroids.instance(j).isMissing(i)) { stdDevVal = pad("--", " ", maxWidth + 1 - 2, true); } else { stdDevVal = pad((strVal = plusMinus + Utils .doubleToString(m_ClusterStdDevs.instance(j).value(i), maxWidth, 4).trim()), " ", maxWidth + 1 - strVal.length(), true); } temp.append(stdDevVal); } temp.append("\n\n"); } } } temp.append("\n\n"); return temp.toString(); } private String pad(String source, String padChar, int length, boolean leftPad) { StringBuffer temp = new StringBuffer(); if (leftPad) { for (int i = 0; i < length; i++) { temp.append(padChar); } temp.append(source); } else { temp.append(source); for (int i = 0; i < length; i++) { temp.append(padChar); } } return temp.toString(); } public Instances getClusterCentroids() { return m_ClusterCentroids; } public Instances getClusterStandardDevs() { return m_ClusterStdDevs; } public int[][][] getClusterNominalCounts() { return m_ClusterNominalCounts; } public double getSquaredError() { return Utils.sum(m_squaredErrors); } public int[] getClusterSizes() { return m_ClusterSizes; } public int[] getAssignments() throws Exception { if (!m_PreserveOrder) { throw new Exception("The assignments are only available when order of instances is preserved (-O)"); } if (m_Assignments == null) { throw new Exception("No assignments made."); } return m_Assignments; } public String getRevision() { return RevisionUtils.extract("$Revision: 5987 $"); } }