Example usage for weka.core Instances meanOrMode

List of usage examples for weka.core Instances meanOrMode

Introduction

In this page you can find the example usage for weka.core Instances meanOrMode.

Prototype

publicdouble meanOrMode(Attribute att) 

Source Link

Document

Returns the mean (mode) for a numeric (nominal) attribute as a floating-point value.

Usage

From source file:adams.data.instancesanalysis.pls.AbstractMultiClassPLS.java

License:Open Source License

/**
 * Preprocesses the data.//w w w . j  a  v  a  2  s  .c  o  m
 *
 * @param instances the data to process
 * @return the preprocessed data
 */
protected Instances preTransform(Instances instances, Map<String, Object> params) throws Exception {
    Map<Integer, double[]> classValues;
    int i;
    int index;

    switch (m_PredictionType) {
    case ALL:
        classValues = null;
        break;
    default:
        classValues = new HashMap<>();
        for (i = 0; i < m_ClassAttributeIndices.size(); i++) {
            index = m_ClassAttributeIndices.get(i);
            classValues.put(index, instances.attributeToDoubleArray(index));
        }
    }

    if (classValues != null)
        params.put(PARAM_CLASSVALUES, classValues);

    if (!isInitialized()) {
        if (m_ReplaceMissing) {
            m_Missing = new ReplaceMissingValues();
            m_Missing.setInputFormat(instances);
        } else {
            m_Missing = null;
        }

        m_ClassMean = new HashMap<>();
        m_ClassStdDev = new HashMap<>();
        for (i = 0; i < m_ClassAttributeIndices.size(); i++) {
            index = m_ClassAttributeIndices.get(i);
            switch (m_PreprocessingType) {
            case CENTER:
                m_ClassMean.put(index, instances.meanOrMode(index));
                m_ClassStdDev.put(index, 1.0);
                m_Filter = new Center();
                ((Center) m_Filter).setIgnoreClass(true);
                break;
            case STANDARDIZE:
                m_ClassMean.put(index, instances.meanOrMode(index));
                m_ClassStdDev.put(index, StrictMath.sqrt(instances.variance(index)));
                m_Filter = new Standardize();
                ((Standardize) m_Filter).setIgnoreClass(true);
                break;
            case NONE:
                m_ClassMean.put(index, 0.0);
                m_ClassStdDev.put(index, 1.0);
                m_Filter = null;
                break;
            default:
                throw new IllegalStateException("Unhandled preprocessing type; " + m_PreprocessingType);
            }
        }
        if (m_Filter != null)
            m_Filter.setInputFormat(instances);
    }

    // filter data
    if (m_Missing != null)
        instances = Filter.useFilter(instances, m_Missing);
    if (m_Filter != null)
        instances = Filter.useFilter(instances, m_Filter);

    return instances;
}

From source file:adams.data.instancesanalysis.pls.AbstractSingleClassPLS.java

License:Open Source License

/**
 * Preprocesses the data.//from  www  .  jav  a 2 s  .  c o m
 *
 * @param instances the data to process
 * @return the preprocessed data
 */
protected Instances preTransform(Instances instances, Map<String, Object> params) throws Exception {
    double[] classValues;

    switch (m_PredictionType) {
    case ALL:
        classValues = null;
        break;
    default:
        classValues = instances.attributeToDoubleArray(instances.classIndex());
    }

    if (classValues != null)
        params.put(PARAM_CLASSVALUES, classValues);

    if (!isInitialized()) {
        if (m_ReplaceMissing) {
            m_Missing = new ReplaceMissingValues();
            m_Missing.setInputFormat(instances);
        } else {
            m_Missing = null;
        }

        switch (m_PreprocessingType) {
        case CENTER:
            m_ClassMean = instances.meanOrMode(instances.classIndex());
            m_ClassStdDev = 1;
            m_Filter = new Center();
            ((Center) m_Filter).setIgnoreClass(true);
            break;
        case STANDARDIZE:
            m_ClassMean = instances.meanOrMode(instances.classIndex());
            m_ClassStdDev = StrictMath.sqrt(instances.variance(instances.classIndex()));
            m_Filter = new Standardize();
            ((Standardize) m_Filter).setIgnoreClass(true);
            break;
        case NONE:
            m_ClassMean = 0;
            m_ClassStdDev = 1;
            m_Filter = null;
            break;
        default:
            throw new IllegalStateException("Unhandled preprocessing type; " + m_PreprocessingType);
        }
        if (m_Filter != null)
            m_Filter.setInputFormat(instances);
    }

    // filter data
    if (m_Missing != null)
        instances = Filter.useFilter(instances, m_Missing);
    if (m_Filter != null)
        instances = Filter.useFilter(instances, m_Filter);

    return instances;
}

From source file:adaptedClusteringAlgorithms.MySimpleKMeans.java

License:Open Source License

/**
 * Move the centroid to it's new coordinates. Generate the centroid
 * coordinates based on it's members (objects assigned to the cluster of the
 * centroid) and the distance function being used.
 * //  w  w w .  j  a v  a 2 s . c o m
 * @param centroidIndex index of the centroid which the coordinates will be
 *          computed
 * @param members the objects that are assigned to the cluster of this
 *          centroid
 * @param updateClusterInfo if the method is supposed to update the m_Cluster
 *          arrays
 * @return the centroid coordinates
 */
protected double[] moveCentroid(int centroidIndex, Instances members, boolean updateClusterInfo) {
    double[] vals = new double[members.numAttributes()];

    for (int j = 0; j < members.numAttributes(); j++) {

        // The centroid is the mean point. If the attribute is nominal, the centroid is the mode
        if (m_DistanceFunction instanceof ChEBIInd || m_DistanceFunction instanceof ChEBIDir
                || m_DistanceFunction instanceof GOInd || m_DistanceFunction instanceof GODir
                || m_DistanceFunction instanceof GOChEBIInd || m_DistanceFunction instanceof GOChEBIDir
                || m_DistanceFunction instanceof CalculusInd || m_DistanceFunction instanceof CalculusDir
                || members.attribute(j).isNominal()) {
            vals[j] = members.meanOrMode(j);
        }

        if (updateClusterInfo) {
            m_ClusterMissingCounts[centroidIndex][j] = members.attributeStats(j).missingCount;
            m_ClusterNominalCounts[centroidIndex][j] = members.attributeStats(j).nominalCounts;
            if (members.attribute(j).isNominal()) {
                if (m_ClusterMissingCounts[centroidIndex][j] > m_ClusterNominalCounts[centroidIndex][j][Utils
                        .maxIndex(m_ClusterNominalCounts[centroidIndex][j])]) {
                    vals[j] = Instance.missingValue(); // mark mode as missing
                }
            } else {
                if (m_ClusterMissingCounts[centroidIndex][j] == members.numInstances()) {
                    vals[j] = Instance.missingValue(); // mark mean as missing
                }
            }
        }
    }
    if (updateClusterInfo) {
        m_ClusterCentroids.add(new Instance(1.0, vals));
    }
    return vals;
}

From source file:aw_cluster.myKMeans.java

protected double[] moveCentroid(Instances members) {
    double[] vals = new double[members.numAttributes()];

    for (int j = 0; j < members.numAttributes(); j++) {
        vals[j] = members.meanOrMode(j);
    }/*  ww  w .j ava 2s.c o m*/
    centroid.add(new Instance(1.0, vals));

    return vals;
}

From source file:br.ufrn.ia.core.clustering.EMIaProject.java

License:Open Source License

private void EM_Init(Instances inst) throws Exception {
    int i, j, k;//from w  w w . j  av a2s .c  o  m

    // run k means 10 times and choose best solution
    SimpleKMeans bestK = null;
    double bestSqE = Double.MAX_VALUE;
    for (i = 0; i < 10; i++) {
        SimpleKMeans sk = new SimpleKMeans();
        sk.setSeed(m_rr.nextInt());
        sk.setNumClusters(m_num_clusters);
        sk.setDisplayStdDevs(true);
        sk.buildClusterer(inst);
        if (sk.getSquaredError() < bestSqE) {
            bestSqE = sk.getSquaredError();
            bestK = sk;
        }
    }

    // initialize with best k-means solution
    m_num_clusters = bestK.numberOfClusters();
    m_weights = new double[inst.numInstances()][m_num_clusters];
    m_model = new DiscreteEstimator[m_num_clusters][m_num_attribs];
    m_modelNormal = new double[m_num_clusters][m_num_attribs][3];
    m_priors = new double[m_num_clusters];
    Instances centers = bestK.getClusterCentroids();
    Instances stdD = bestK.getClusterStandardDevs();
    double[][][] nominalCounts = bestK.getClusterNominalCounts();
    double[] clusterSizes = bestK.getClusterSizes();

    for (i = 0; i < m_num_clusters; i++) {
        Instance center = centers.instance(i);
        for (j = 0; j < m_num_attribs; j++) {
            if (inst.attribute(j).isNominal()) {
                m_model[i][j] = new DiscreteEstimator(m_theInstances.attribute(j).numValues(), true);
                for (k = 0; k < inst.attribute(j).numValues(); k++) {
                    m_model[i][j].addValue(k, nominalCounts[i][j][k]);
                }
            } else {
                double minStdD = (m_minStdDevPerAtt != null) ? m_minStdDevPerAtt[j] : m_minStdDev;
                double mean = (center.isMissing(j)) ? inst.meanOrMode(j) : center.value(j);
                m_modelNormal[i][j][0] = mean;
                double stdv = (stdD.instance(i).isMissing(j))
                        ? ((m_maxValues[j] - m_minValues[j]) / (2 * m_num_clusters))
                        : stdD.instance(i).value(j);
                if (stdv < minStdD) {
                    stdv = inst.attributeStats(j).numericStats.stdDev;
                    if (Double.isInfinite(stdv)) {
                        stdv = minStdD;
                    }
                    if (stdv < minStdD) {
                        stdv = minStdD;
                    }
                }
                if (stdv <= 0) {
                    stdv = m_minStdDev;
                }

                m_modelNormal[i][j][1] = stdv;
                m_modelNormal[i][j][2] = 1.0;
            }
        }
    }

    for (j = 0; j < m_num_clusters; j++) {
        // m_priors[j] += 1.0;
        m_priors[j] = clusterSizes[j];
    }
    Utils.normalize(m_priors);
}

From source file:br.ufrn.ia.core.clustering.SimpleKMeansIaProject.java

License:Open Source License

protected double[] moveCentroid(int centroidIndex, Instances members, boolean updateClusterInfo) {
    double[] vals = new double[members.numAttributes()];

    // used only for Manhattan Distance
    Instances sortedMembers = null;/*from www  . j  ava 2s  .  c  o  m*/
    int middle = 0;
    boolean dataIsEven = false;

    if (m_DistanceFunction instanceof ManhattanDistance) {
        middle = (members.numInstances() - 1) / 2;
        dataIsEven = ((members.numInstances() % 2) == 0);
        if (m_PreserveOrder) {
            sortedMembers = members;
        } else {
            sortedMembers = new Instances(members);
        }
    }

    for (int j = 0; j < members.numAttributes(); j++) {

        // in case of Euclidian distance the centroid is the mean point
        // in case of Manhattan distance the centroid is the median point
        // in both cases, if the attribute is nominal, the centroid is the
        // mode
        if (m_DistanceFunction instanceof EuclideanDistance || members.attribute(j).isNominal()) {
            vals[j] = members.meanOrMode(j);
        } else if (m_DistanceFunction instanceof ManhattanDistance) {
            // singleton special case
            if (members.numInstances() == 1) {
                vals[j] = members.instance(0).value(j);
            } else {
                sortedMembers.kthSmallestValue(j, middle + 1);
                vals[j] = sortedMembers.instance(middle).value(j);
                if (dataIsEven) {
                    sortedMembers.kthSmallestValue(j, middle + 2);
                    vals[j] = (vals[j] + sortedMembers.instance(middle + 1).value(j)) / 2;
                }
            }
        }

        if (updateClusterInfo) {
            m_ClusterMissingCounts[centroidIndex][j] = members.attributeStats(j).missingCount;
            m_ClusterNominalCounts[centroidIndex][j] = members.attributeStats(j).nominalCounts;
            if (members.attribute(j).isNominal()) {
                if (m_ClusterMissingCounts[centroidIndex][j] > m_ClusterNominalCounts[centroidIndex][j][Utils
                        .maxIndex(m_ClusterNominalCounts[centroidIndex][j])]) {
                    vals[j] = Utils.missingValue(); // mark mode as missing
                }
            } else {
                if (m_ClusterMissingCounts[centroidIndex][j] == members.numInstances()) {
                    vals[j] = Utils.missingValue(); // mark mean as missing
                }
            }
        }
    }
    if (updateClusterInfo)
        m_ClusterCentroids.add(new DenseInstance(1.0, vals));
    return vals;
}

From source file:CGLSMethod.LinearRegression.java

License:Open Source License

/**
 * Builds a regression model for the given data.
 *
 * @param data the training data to be used for generating the
 * linear regression function//  ww w . ja  v  a2s  . c om
 * @throws Exception if the classifier could not be built successfully
 */
public void buildClassifier(Instances data) throws Exception {

    // Preprocess instances
    if (!m_checksTurnedOff) {
        m_TransformFilter = new NominalToBinary();
        m_TransformFilter.setInputFormat(data);
        data = Filter.useFilter(data, m_TransformFilter);
        m_MissingFilter = new ReplaceMissingValues();
        m_MissingFilter.setInputFormat(data);
        data = Filter.useFilter(data, m_MissingFilter);
        data.deleteWithMissingClass();
    } else {
        m_TransformFilter = null;
        m_MissingFilter = null;
    }

    m_ClassIndex = data.classIndex();
    m_TransformedData = data;

    // Turn all attributes on for a start
    m_SelectedAttributes = new boolean[data.numAttributes()];
    for (int i = 0; i < data.numAttributes(); i++) {
        if (i != m_ClassIndex) {
            m_SelectedAttributes[i] = true;
        }
    }
    m_Coefficients = null;

    // Compute means and standard deviations
    m_Means = new double[data.numAttributes()];
    m_StdDevs = new double[data.numAttributes()];
    for (int j = 0; j < data.numAttributes(); j++) {
        if (j != data.classIndex()) {
            m_Means[j] = data.meanOrMode(j);
            m_StdDevs[j] = Math.sqrt(data.variance(j));
            if (m_StdDevs[j] == 0) {
                m_SelectedAttributes[j] = false;
            }
        }
    }

    m_ClassStdDev = Math.sqrt(data.variance(m_TransformedData.classIndex()));
    m_ClassMean = data.meanOrMode(m_TransformedData.classIndex());

    // Perform the regression
    findBestModel();

    // Save memory
    m_TransformedData = new Instances(data, 0);
}

From source file:Classifier.supervised.LinearRegression.java

License:Open Source License

/**
 * Builds a regression model for the given data.
 *
 * @param data the training data to be used for generating the
 * linear regression function//  w ww .  ja  v a2 s.  c o m
 * @throws Exception if the classifier could not be built successfully
 */
public void buildClassifier(Instances data) throws Exception {
    m_ModelBuilt = false;

    if (!m_checksTurnedOff) {
        // can classifier handle the data?
        getCapabilities().testWithFail(data);

        // remove instances with missing class
        data = new Instances(data);
        data.deleteWithMissingClass();
    }

    // Preprocess instances
    if (!m_checksTurnedOff) {
        m_TransformFilter = new NominalToBinary();
        m_TransformFilter.setInputFormat(data);
        data = Filter.useFilter(data, m_TransformFilter);
        m_MissingFilter = new ReplaceMissingValues();
        m_MissingFilter.setInputFormat(data);
        data = Filter.useFilter(data, m_MissingFilter);
        data.deleteWithMissingClass();
    } else {
        m_TransformFilter = null;
        m_MissingFilter = null;
    }

    m_ClassIndex = data.classIndex();
    m_TransformedData = data;

    // Turn all attributes on for a start
    m_SelectedAttributes = new boolean[data.numAttributes()];
    for (int i = 0; i < data.numAttributes(); i++) {
        if (i != m_ClassIndex) {
            m_SelectedAttributes[i] = true;
        }
    }
    m_Coefficients = null;

    // Compute means and standard deviations
    m_Means = new double[data.numAttributes()];
    m_StdDevs = new double[data.numAttributes()];
    for (int j = 0; j < data.numAttributes(); j++) {
        if (j != data.classIndex()) {
            m_Means[j] = data.meanOrMode(j);
            m_StdDevs[j] = Math.sqrt(data.variance(j));
            if (m_StdDevs[j] == 0) {
                m_SelectedAttributes[j] = false;
            }
        }
    }

    m_ClassStdDev = Math.sqrt(data.variance(m_TransformedData.classIndex()));
    m_ClassMean = data.meanOrMode(m_TransformedData.classIndex());

    // Perform the regression
    findBestModel();

    // Save memory
    if (m_Minimal) {
        m_TransformedData = null;
        m_Means = null;
        m_StdDevs = null;
    } else {
        m_TransformedData = new Instances(data, 0);
    }

    m_ModelBuilt = true;
}

From source file:cn.edu.xmu.dm.d3c.clustering.SimpleKMeans.java

License:Open Source License

/**
 * Move the centroid to it's new coordinates. Generate the centroid coordinates based 
 * on it's  members (objects assigned to the cluster of the centroid) and the distance 
 * function being used.//from  w  ww .  ja  v  a 2  s .  co m
 * @param centroidIndex index of the centroid which the coordinates will be computed
 * @param members the objects that are assigned to the cluster of this centroid
 * @param updateClusterInfo if the method is supposed to update the m_Cluster arrays
 * @return the centroid coordinates
 */
protected double[] moveCentroid(int centroidIndex, Instances members, boolean updateClusterInfo) {
    double[] vals = new double[members.numAttributes()];

    //used only for Manhattan Distance
    Instances sortedMembers = null;
    int middle = 0;
    boolean dataIsEven = false;

    if (m_DistanceFunction instanceof ManhattanDistance) {
        middle = (members.numInstances() - 1) / 2;
        dataIsEven = ((members.numInstances() % 2) == 0);
        if (m_PreserveOrder) {
            sortedMembers = members;
        } else {
            sortedMembers = new Instances(members);
        }
    }

    for (int j = 0; j < members.numAttributes(); j++) {

        //in case of Euclidian distance the centroid is the mean point
        //in case of Manhattan distance the centroid is the median point
        //in both cases, if the attribute is nominal, the centroid is the mode
        if (m_DistanceFunction instanceof EuclideanDistance || members.attribute(j).isNominal()) {
            vals[j] = members.meanOrMode(j);
        } else if (m_DistanceFunction instanceof ManhattanDistance) {
            //singleton special case
            if (members.numInstances() == 1) {
                vals[j] = members.instance(0).value(j);
            } else {
                sortedMembers.kthSmallestValue(j, middle + 1);
                vals[j] = sortedMembers.instance(middle).value(j);
                if (dataIsEven) {
                    sortedMembers.kthSmallestValue(j, middle + 2);
                    vals[j] = (vals[j] + sortedMembers.instance(middle + 1).value(j)) / 2;
                }
            }
        }

        if (updateClusterInfo) {
            m_ClusterMissingCounts[centroidIndex][j] = members.attributeStats(j).missingCount;
            m_ClusterNominalCounts[centroidIndex][j] = members.attributeStats(j).nominalCounts;
            if (members.attribute(j).isNominal()) {
                if (m_ClusterMissingCounts[centroidIndex][j] > m_ClusterNominalCounts[centroidIndex][j][Utils
                        .maxIndex(m_ClusterNominalCounts[centroidIndex][j])]) {
                    vals[j] = Utils.missingValue(); // mark mode as missing
                }
            } else {
                if (m_ClusterMissingCounts[centroidIndex][j] == members.numInstances()) {
                    vals[j] = Utils.missingValue(); // mark mean as missing
                }
            }
        }
    }
    if (updateClusterInfo)
        m_ClusterCentroids.add(new DenseInstance(1.0, vals));
    return vals;
}

From source file:de.ugoe.cs.cpdp.dataprocessing.NormalizationUtil.java

License:Apache License

/**
 * <p>// ww  w .ja  v  a  2  s  . co  m
 * Z-Score normalization (N2 in Transfer Defect Learning by Nam et al.).
 * </p>
 *
 * @param data
 *            data that is normalized
 */
public static void zScore(Instances data) {
    final double[] mean = new double[data.numAttributes()];
    final double[] std = new double[data.numAttributes()];

    // get means and stddevs of data
    for (int j = 0; j < data.numAttributes(); j++) {
        if (data.classIndex() != j) {
            mean[j] = data.meanOrMode(j);
            std[j] = Math.sqrt(data.variance(j));
        }
    }
    applyZScore(data, mean, std);
}