List of usage examples for weka.core Instances Instances
public Instances(Instances dataset)
From source file:controller.DecisionTreeServlet.java
@Override protected void doPost(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException { request.setCharacterEncoding("UTF-8"); String dir = "/data/"; String path = getServletContext().getRealPath(dir); String action = request.getParameter("action"); switch (action) { case "create": { String fileName = request.getParameter("file"); String aux = fileName.substring(0, fileName.indexOf(".")); String pathInput = path + "/" + request.getParameter("file"); String pathTrainingOutput = path + "/" + aux + "-training-arff.txt"; String pathTestOutput = path + "/" + aux + "-test-arff.txt"; String pathDecisionTree = path + "/" + aux + "-decisionTree.txt"; String name = request.getParameter("name"); int range = Integer.parseInt(request.getParameter("range")); int size = Integer.parseInt(request.getParameter("counter")); String[] columns = new String[size]; String[] types = new String[size]; int[] positions = new int[size]; int counter = 0; for (int i = 0; i < size; i++) { if (request.getParameter("column-" + (i + 1)) != null) { columns[counter] = request.getParameter("column-" + (i + 1)); types[counter] = request.getParameter("type-" + (i + 1)); positions[counter] = Integer.parseInt(request.getParameter("position-" + (i + 1))); counter++;/* w w w .jav a 2s . c o m*/ } } FormatFiles.convertTxtToArff(pathInput, pathTrainingOutput, pathTestOutput, name, columns, types, positions, counter, range); try { J48 j48 = new J48(); BufferedReader readerTraining = new BufferedReader(new FileReader(pathTrainingOutput)); Instances instancesTraining = new Instances(readerTraining); instancesTraining.setClassIndex(instancesTraining.numAttributes() - 1); j48.buildClassifier(instancesTraining); BufferedReader readerTest = new BufferedReader(new FileReader(pathTestOutput)); //BufferedReader readerTest = new BufferedReader(new FileReader(pathTrainingOutput)); Instances instancesTest = new Instances(readerTest); instancesTest.setClassIndex(instancesTest.numAttributes() - 1); int corrects = 0; int truePositive = 0; int trueNegative = 0; int falsePositive = 0; int falseNegative = 0; for (int i = 0; i < instancesTest.size(); i++) { Instance instance = instancesTest.get(i); double correctValue = instance.value(instance.attribute(instancesTest.numAttributes() - 1)); double classification = j48.classifyInstance(instance); if (correctValue == classification) { corrects++; } if (correctValue == 1 && classification == 1) { truePositive++; } if (correctValue == 1 && classification == 0) { falseNegative++; } if (correctValue == 0 && classification == 1) { falsePositive++; } if (correctValue == 0 && classification == 0) { trueNegative++; } } Evaluation eval = new Evaluation(instancesTraining); eval.evaluateModel(j48, instancesTest); PrintWriter writer = new PrintWriter(new BufferedWriter(new FileWriter(pathDecisionTree, false))); writer.println(j48.toString()); writer.println(""); writer.println(""); writer.println("Results"); writer.println(eval.toSummaryString()); writer.close(); response.sendRedirect("DecisionTree?action=view&corrects=" + corrects + "&totalTest=" + instancesTest.size() + "&totalTrainig=" + instancesTraining.size() + "&truePositive=" + truePositive + "&trueNegative=" + trueNegative + "&falsePositive=" + falsePositive + "&falseNegative=" + falseNegative + "&fileName=" + aux + "-decisionTree.txt"); } catch (Exception e) { System.out.println(e.getMessage()); response.sendRedirect("Navigation?action=decisionTree"); } break; } default: response.sendError(404); } }
From source file:controller.KMeansBean.java
public void handleFileUpload(FileUploadEvent event) { FacesMessage message = new FacesMessage("Succesful", event.getFile().getFileName() + " is uploaded."); FacesContext.getCurrentInstance().addMessage(null, message); try {/*from w ww.ja v a 2 s. c o m*/ if (event.getFile().getFileName().endsWith(".arff")) { inst = new Instances(new InputStreamReader(event.getFile().getInputstream())); } else { CSVLoader scv = new CSVLoader(); scv.setSource(event.getFile().getInputstream()); inst = scv.getDataSet(); } spalten = new ArrayList<>(); for (int i = 0; i < inst.firstInstance().numAttributes(); i++) { spalten.add(inst.firstInstance().attribute(i).name()); } this.description = this.inst.toSummaryString(); calculate(); } catch (IOException ex) { System.out.println("Fehler: " + ex); } }
From source file:controller.MineroControler.java
public String regresionLineal() { BufferedReader breader = null; Instances datos = null;/* w w w . j a va 2s . c om*/ breader = new BufferedReader(fuente_arff); try { datos = new Instances(breader); datos.setClassIndex(datos.numAttributes() - 1); // clase principal, ltima en atributos } catch (IOException ex) { System.err.println("Problemas al intentar cargar los datos"); } LinearRegression regresionL = new LinearRegression(); try { regresionL.buildClassifier(datos); Instance nuevaCal = datos.lastInstance(); double calif = regresionL.classifyInstance(nuevaCal); setValorCalculado(new Double(calif)); } catch (Exception ex) { System.err.println("Problemas al clasificar instancia"); } return regresionL.toString(); }
From source file:controller.MineroControler.java
public String clasificarSimpleKmeans(int numClusters) { BufferedReader breader = null; Instances datos = null;/* ww w . java2 s . c om*/ breader = new BufferedReader(fuente_arff); try { datos = new Instances(breader); } catch (IOException ex) { System.err.println("Problemas al intentar cargar los datos"); } SimpleKMeans skmeans = new SimpleKMeans(); try { skmeans.setSeed(10); skmeans.setPreserveInstancesOrder(true); skmeans.setNumClusters(numClusters); skmeans.buildClusterer(datos); } catch (Exception ex) { System.err.println("Problemas al ejecutar algorimo de clasificacion"); } return skmeans.toString(); }
From source file:controller.MineroControler.java
public String clasificardorArbolAleat(String atributo) { BufferedReader breader = null; Instances datos = null;/*w w w . j a v a2 s . c o m*/ breader = new BufferedReader(fuente_arff); try { datos = new Instances(breader); Attribute atr = datos.attribute(atributo); datos.setClass(atr); //datos.setClassIndex(0); } catch (IOException ex) { System.err.println("Problemas al intentar cargar los datos"); return null; } RandomTree arbol = new RandomTree(); // Class for constructing a tree that considers K randomly chosen attributes at each node. try { arbol.setNumFolds(100); arbol.setKValue(0); arbol.setMinNum(1); arbol.setMaxDepth(0); arbol.setSeed(1); arbol.buildClassifier(datos); } catch (Exception ex) { System.err.println("Problemas al ejecutar algorimo de clasificacion" + ex.getLocalizedMessage()); } return arbol.toString(); }
From source file:controller.NaiveBayesBean.java
public void handleFileUpload(FileUploadEvent event) throws FileNotFoundException, IOException, Exception { System.out.println("File uploaded!"); System.out.println(event.getFile().getContentType()); //this.data = new Instances(new FileReader("web/resources/data/weather.nominal.arff")); //Daten als Instanzen aufbereiten //CSV Converter if (event.getFile().getFileName().endsWith(".csv")) { CSVLoader csv = new CSVLoader(); BufferedReader br = new BufferedReader(new InputStreamReader(event.getFile().getInputstream())); String s;//from w w w .java2 s. co m StringBuilder sb = new StringBuilder(); while ((s = br.readLine()) != null) { sb.append(s.replace(";", ",")); //sb.append(s.replace("\"", "")); sb.append("\n"); System.out.println(sb.toString()); } csv.setSource(new ByteArrayInputStream(sb.toString().getBytes())); this.data = csv.getDataSet(); } else { this.data = new Instances(new InputStreamReader(event.getFile().getInputstream())); } this.attributes.clear(); //Attribute auslesen und in Bean bereitstellen for (int i = 0; i < this.data.numAttributes(); i++) { this.attributes.add(data.attribute(i)); } //Meta-Daten der hochgeladenen Daten bereitstellen this.description = this.data.toSummaryString(); //Klasse als letzte Spalte annehmen this.data.setClassIndex(this.data.numAttributes() - 1); this.index = this.data.classAttribute().index(); //Daten analysieren this.classifier.buildClassifier(this.data); //Text im Interface setzen this.modeloutput = "Model fr Klasse " + this.data.classAttribute().name(); this.model = this.classifier.toString(); }
From source file:controller.NaiveBayesServlet.java
@Override protected void doPost(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException { request.setCharacterEncoding("UTF-8"); String dir = "/data/"; String path = getServletContext().getRealPath(dir); String action = request.getParameter("action"); switch (action) { case "create": { String fileName = request.getParameter("file"); String aux = fileName.substring(0, fileName.indexOf(".")); String pathInput = path + "/" + request.getParameter("file"); String pathTrainingOutput = path + "/" + aux + "-training-arff.txt"; String pathTestOutput = path + "/" + aux + "-test-arff.txt"; String pathNaivebayes = path + "/" + aux + "-naiveBayes.txt"; String name = request.getParameter("name"); int range = Integer.parseInt(request.getParameter("range")); int size = Integer.parseInt(request.getParameter("counter")); String[] columns = new String[size]; String[] types = new String[size]; int[] positions = new int[size]; int counter = 0; for (int i = 0; i < size; i++) { if (request.getParameter("column-" + (i + 1)) != null) { columns[counter] = request.getParameter("column-" + (i + 1)); types[counter] = request.getParameter("type-" + (i + 1)); positions[counter] = Integer.parseInt(request.getParameter("position-" + (i + 1))); counter++;/*from w w w.ja va 2s.c o m*/ } } FormatFiles.convertTxtToArff(pathInput, pathTrainingOutput, pathTestOutput, name, columns, types, positions, counter, range); try { NaiveBayes naiveBayes = new NaiveBayes(); BufferedReader readerTraining = new BufferedReader(new FileReader(pathTrainingOutput)); Instances instancesTraining = new Instances(readerTraining); instancesTraining.setClassIndex(instancesTraining.numAttributes() - 1); naiveBayes.buildClassifier(instancesTraining); BufferedReader readerTest = new BufferedReader(new FileReader(pathTestOutput)); //BufferedReader readerTest = new BufferedReader(new FileReader(pathTrainingOutput)); Instances instancesTest = new Instances(readerTest); instancesTest.setClassIndex(instancesTest.numAttributes() - 1); Evaluation eval = new Evaluation(instancesTraining); eval.evaluateModel(naiveBayes, instancesTest); int corrects = 0; int truePositive = 0; int trueNegative = 0; int falsePositive = 0; int falseNegative = 0; for (int i = 0; i < instancesTest.size(); i++) { Instance instance = instancesTest.get(i); double correctValue = instance.value(instance.attribute(instancesTest.numAttributes() - 1)); double classification = naiveBayes.classifyInstance(instance); if (correctValue == classification) { corrects++; } if (correctValue == 1 && classification == 1) { truePositive++; } if (correctValue == 1 && classification == 0) { falseNegative++; } if (correctValue == 0 && classification == 1) { falsePositive++; } if (correctValue == 0 && classification == 0) { trueNegative++; } } PrintWriter writer = new PrintWriter(new BufferedWriter(new FileWriter(pathNaivebayes, false))); writer.println(naiveBayes.toString()); writer.println(""); writer.println(""); writer.println("Results"); writer.println(eval.toSummaryString()); writer.close(); response.sendRedirect( "NaiveBayes?action=view&corrects=" + corrects + "&totalTest=" + instancesTest.size() + "&totalTrainig=" + instancesTraining.size() + "&range=" + range + "&truePositive=" + truePositive + "&trueNegative=" + trueNegative + "&falsePositive=" + falsePositive + "&falseNegative=" + falseNegative + "&fileName=" + aux + "-naiveBayes.txt"); } catch (Exception e) { System.out.println(e.getMessage()); response.sendRedirect("Navigation?action=naiveBayes"); } break; } default: response.sendError(404); } }
From source file:controller.OneRBean.java
public void handleFileUpload(FileUploadEvent event) { FacesMessage message = new FacesMessage("Succesful", event.getFile().getFileName() + " is uploaded."); FacesContext.getCurrentInstance().addMessage(null, message); try {//from w ww . j av a2s . com if (event.getFile().getFileName().endsWith(".arff")) { inst = new Instances(new InputStreamReader(event.getFile().getInputstream())); } else { CSVLoader scv = new CSVLoader(); scv.setSource(event.getFile().getInputstream()); inst = scv.getDataSet(); } columns = new ArrayList<>(); for (int i = 0; i < inst.firstInstance().numAttributes(); i++) { columns.add(inst.firstInstance().attribute(i).name()); } System.out.println(columns); } catch (IOException ex) { System.out.println("Fehler: " + ex); } this.description = this.inst.toSummaryString(); this.calculate(); }
From source file:core.classifier.MyFirstClassifier.java
License:Open Source License
/** * Method for building the classifier. Implements a one-against-one * wrapper for multi-class problems./*from w w w . j a v a 2 s .com*/ * * @param insts the set of training instances * @throws Exception if the classifier can't be built successfully */ public void buildClassifier(Instances insts) throws Exception { if (!m_checksTurnedOff) { // can classifier handle the data? getCapabilities().testWithFail(insts); // remove instances with missing class insts = new Instances(insts); insts.deleteWithMissingClass(); /* Removes all the instances with weight equal to 0. MUST be done since condition (8) of Keerthi's paper is made with the assertion Ci > 0 (See equation (3a). */ Instances data = new Instances(insts, insts.numInstances()); for (int i = 0; i < insts.numInstances(); i++) { if (insts.instance(i).weight() > 0) data.add(insts.instance(i)); } if (data.numInstances() == 0) { throw new Exception("No training instances left after removing " + "instances with weight 0!"); } insts = data; } if (!m_checksTurnedOff) { m_Missing = new ReplaceMissingValues(); m_Missing.setInputFormat(insts); insts = Filter.useFilter(insts, m_Missing); } else { m_Missing = null; } if (getCapabilities().handles(Capability.NUMERIC_ATTRIBUTES)) { boolean onlyNumeric = true; if (!m_checksTurnedOff) { for (int i = 0; i < insts.numAttributes(); i++) { if (i != insts.classIndex()) { if (!insts.attribute(i).isNumeric()) { onlyNumeric = false; break; } } } } if (!onlyNumeric) { m_NominalToBinary = new NominalToBinary(); m_NominalToBinary.setInputFormat(insts); insts = Filter.useFilter(insts, m_NominalToBinary); } else { m_NominalToBinary = null; } } else { m_NominalToBinary = null; } if (m_filterType == FILTER_STANDARDIZE) { m_Filter = new Standardize(); m_Filter.setInputFormat(insts); insts = Filter.useFilter(insts, m_Filter); } else if (m_filterType == FILTER_NORMALIZE) { m_Filter = new Normalize(); m_Filter.setInputFormat(insts); insts = Filter.useFilter(insts, m_Filter); } else { m_Filter = null; } m_classIndex = insts.classIndex(); m_classAttribute = insts.classAttribute(); m_KernelIsLinear = (m_kernel instanceof PolyKernel) && (((PolyKernel) m_kernel).getExponent() == 1.0); // Generate subsets representing each class Instances[] subsets = new Instances[insts.numClasses()]; for (int i = 0; i < insts.numClasses(); i++) { subsets[i] = new Instances(insts, insts.numInstances()); } for (int j = 0; j < insts.numInstances(); j++) { Instance inst = insts.instance(j); subsets[(int) inst.classValue()].add(inst); } for (int i = 0; i < insts.numClasses(); i++) { subsets[i].compactify(); } // Build the binary classifiers Random rand = new Random(m_randomSeed); m_classifiers = new BinarySMO[insts.numClasses()][insts.numClasses()]; for (int i = 0; i < insts.numClasses(); i++) { for (int j = i + 1; j < insts.numClasses(); j++) { m_classifiers[i][j] = new BinarySMO(); m_classifiers[i][j].setKernel(Kernel.makeCopy(getKernel())); Instances data = new Instances(insts, insts.numInstances()); for (int k = 0; k < subsets[i].numInstances(); k++) { data.add(subsets[i].instance(k)); } for (int k = 0; k < subsets[j].numInstances(); k++) { data.add(subsets[j].instance(k)); } data.compactify(); data.randomize(rand); m_classifiers[i][j].buildClassifier(data, i, j, m_fitLogisticModels, m_numFolds, m_randomSeed); } } }
From source file:core.ClusterEvaluationEX.java
License:Open Source License
/** * Perform a cross-validation for DensityBasedClusterer on a set of instances. * * @param clusterer the clusterer to use * @param data the training data//from w ww.jav a 2s . co m * @param numFolds number of folds of cross validation to perform * @param random random number seed for cross-validation * @return the cross-validated log-likelihood * @throws Exception if an error occurs */ public static double crossValidateModel(DensityBasedClusterer clusterer, Instances data, int numFolds, Random random) throws Exception { Instances train, test; double foldAv = 0; ; data = new Instances(data); data.randomize(random); // double sumOW = 0; for (int i = 0; i < numFolds; i++) { // Build and test clusterer train = data.trainCV(numFolds, i, random); clusterer.buildClusterer(train); test = data.testCV(numFolds, i); for (int j = 0; j < test.numInstances(); j++) { try { foldAv += ((DensityBasedClusterer) clusterer).logDensityForInstance(test.instance(j)); // sumOW += test.instance(j).weight(); // double temp = Utils.sum(tempDist); } catch (Exception ex) { // unclustered instances } } } // return foldAv / sumOW; return foldAv / data.numInstances(); }