List of usage examples for weka.core Instances attribute
publicAttribute attribute(String name)
From source file:Helper.CustomFilter.java
public String convertToFit(String value, Instances data, int index) { int i;/*from ww w.j a va 2s. co m*/ String threshold = data.attribute(index).value(0); for (i = 0; i < data.numDistinctValues(data.attribute(index)); i++) { if (Float.valueOf(value) < Float.valueOf(data.attribute(index).value(i))) { value = threshold; return value; } threshold = data.attribute(index).value(i); } value = threshold; return value; }
From source file:id3.MyID3.java
/** * Algoritma pohon keputusan// w ww . ja v a 2 s . com * @param instances data train * @param attributes remaining attributes * @throws Exception */ public void buildMyID3(Instances instances, ArrayList<Attribute> attributes) throws Exception { // Check if no instances have reached this node. if (instances.numInstances() == 0) { classAttribute = null; classLabel = Instance.missingValue(); classDistributionAmongInstances = new double[instances.numClasses()]; return; } // Check if all instances only contain one class label if (computeEntropy(instances) == 0) { currentAttribute = null; classDistributionAmongInstances = classDistribution(instances); // Labelling process at node for (int i = 0; i < classDistributionAmongInstances.length; i++) { if (classDistributionAmongInstances[i] > 0) { classLabel = i; break; } } classAttribute = instances.classAttribute(); Utils.normalize(classDistributionAmongInstances); } else { // Compute infogain for each attribute double[] infoGainAttribute = new double[instances.numAttributes()]; for (int i = 0; i < instances.numAttributes(); i++) { infoGainAttribute[i] = computeIG(instances, instances.attribute(i)); } // Choose attribute with maximum information gain int indexMaxInfoGain = 0; double maximumInfoGain = 0.0; for (int i = 0; i < (infoGainAttribute.length - 1); i++) { if (infoGainAttribute[i] > maximumInfoGain) { maximumInfoGain = infoGainAttribute[i]; indexMaxInfoGain = i; } } currentAttribute = instances.attribute(indexMaxInfoGain); // Delete current attribute from remaining attribute ArrayList<Attribute> remainingAttributes = attributes; if (!remainingAttributes.isEmpty()) { int indexAttributeDeleted = 0; for (int i = 0; i < remainingAttributes.size(); i++) { if (remainingAttributes.get(i).index() == currentAttribute.index()) { indexAttributeDeleted = i; } } remainingAttributes.remove(indexAttributeDeleted); } // Split instances based on currentAttribute (create branch new node) Instances[] instancesSplitBasedAttribute = splitData(instances, currentAttribute); subTree = new MyID3[currentAttribute.numValues()]; for (int i = 0; i < currentAttribute.numValues(); i++) { if (instancesSplitBasedAttribute[i].numInstances() == 0) { // Handle empty examples at nodes double[] currentClassDistribution = classDistribution(instances); classLabel = 0.0; double counterDistribution = 0.0; for (int j = 0; j < currentClassDistribution.length; j++) { if (currentClassDistribution[j] > counterDistribution) { classLabel = j; } } classAttribute = instances.classAttribute(); } else { subTree[i] = new MyID3(); subTree[i].buildMyID3(instancesSplitBasedAttribute[i], remainingAttributes); } } } }
From source file:id3classifier.ID3Classifiers.java
@Override public void buildClassifier(Instances instances) throws Exception { // create list of instances of size instances' number of instances // create list of attributes of size instances' number of attributes List<Instance> instanceList = new ArrayList<>(instances.numInstances()); List<Attribute> attributeList = new ArrayList<>(instances.numAttributes()); // from index 0 to instances' number of instances, add instances' current // instance to the list of instances... mouthfull for (int i = 0; i < instances.numInstances(); i++) { instanceList.add(instances.instance(i)); }/*from w ww . j a v a2 s. co m*/ // from index 0 to instances' number of attributes, if the index is not // equal to instances' class index... for (int i = 0; i < instances.numAttributes(); i++) { if (i != instances.classIndex()) { // add instances' current attribute to the attribute list attributeList.add(instances.attribute(i)); } } // set tree equal to the tree built by buildTree() using the instance // list and the attribute list tree = buildTree(instanceList, attributeList); }
From source file:imba.classifier.NBTubes.java
@Override public void buildClassifier(Instances data) { dataClassifier = new ArrayList<>(); infoClassifier = new ArrayList<>(); validAttribute = new ArrayList<>(); dataset = null;/*www . ja v a 2 s . c o m*/ sumClass = null; dataSize = 0; header_Instances = data; Filter f; int i, j, k, l, m; int sumVal; int numAttr = data.numAttributes(); //ini beserta kelasnya, jadi atribut + 1 i = 0; while (i < numAttr && wasNumeric == false) { if (i == classIdx) { i++; } if (i != numAttr && data.attribute(i).isNumeric()) { wasNumeric = true; } i++; } Instance p; //kasih filter if (wasNumeric) { f = new Normalize(); //Filter f = new NumericToNominal(); try { f.setInputFormat(data); for (Instance i1 : data) { f.input(i1); } f.batchFinished(); } catch (Exception ex) { Logger.getLogger(NBTubes.class.getName()).log(Level.SEVERE, null, ex); } dataset = f.getOutputFormat(); while ((p = f.output()) != null) { dataset.add(p); } } //f = new NumericToNominal(); if (filter.equals("Discretize")) { f = new Discretize(); } else { f = new NumericToNominal(); } try { if (wasNumeric) { f.setInputFormat(dataset); for (Instance i1 : dataset) { f.input(i1); } } else { f.setInputFormat(data); for (Instance i1 : data) { f.input(i1); } } f.batchFinished(); } catch (Exception ex) { Logger.getLogger(NBTubes.class.getName()).log(Level.SEVERE, null, ex); } dataset = null; dataset = f.getOutputFormat(); while ((p = f.output()) != null) { dataset.add(p); } //building data structure classIdx = data.classIndex(); dataSize = data.size(); //isi data dan info classifier dengan array kosong i = 0; j = i; while (j < numAttr) { if (i == classIdx) { i++; } else { dataClassifier.add(new ArrayList<>()); infoClassifier.add(new ArrayList<>()); if (j < i) { m = j - 1; } else { m = j; } k = 0; while (k < dataset.attribute(j).numValues()) { dataClassifier.get(m).add(new ArrayList<>()); infoClassifier.get(m).add(new ArrayList<>()); l = 0; while (l < dataset.attribute(classIdx).numValues()) { dataClassifier.get(m).get(k).add(0); infoClassifier.get(m).get(k).add(0.0); l++; } k++; } } i++; j++; } //isi data classifier dari dataset sumClass = new int[data.numClasses()]; i = 0; while (i < dataset.size()) { j = 0; k = j; while (k < dataset.numAttributes()) { if (j == classIdx) { j++; } else { if (k < j) { m = k - 1; } else { m = k; } dataClassifier.get(m).get((int) dataset.get(i).value(k)).set( (int) dataset.get(i).value(classIdx), dataClassifier.get(m).get((int) dataset.get(i).value(k)) .get((int) dataset.get(i).value(classIdx)) + 1); if (m == 0) { sumClass[(int) dataset.get(i).value(classIdx)]++; } } k++; j++; } i++; } //proses double values i = 0; while (i < dataClassifier.size()) { j = 0; while (j < dataClassifier.get(i).size()) { k = 0; while (k < dataClassifier.get(i).get(j).size()) { infoClassifier.get(i).get(j).set(k, (double) dataClassifier.get(i).get(j).get(k) / sumClass[k]); k++; } j++; } i++; } /* //liat apakah ada nilai di tiap atribut //yang merepresentasikan lebih dari 80% data i = 0; while (i < dataClassifier.size()) { j = 0; while (j < dataClassifier.get(i).size()) { j++; } i++; } */ }
From source file:iris.ID3.java
public void makeLikeAWhat(Instances instances) { // Create storage for different info gains double[] infoGains = new double[instances.numAttributes()]; // Enumerate through attributes to find the best gain Enumeration attributeEnum = instances.enumerateAttributes(); while (attributeEnum.hasMoreElements()) { // Loop through attributes, adding gain to infoGains array Attribute att = (Attribute) attributeEnum.nextElement(); infoGains[att.index()] = infoGain(instances, att); }// ww w . ja va 2 s . c o m // Use maxIndex to find the highest info gain in the array highestInfoGain = instances.attribute(Utils.maxIndex(infoGains)); // Make a leaf if there is no more info to gain // Otherwise, create children // Check if there is no more info to gain if (Utils.eq(infoGains[highestInfoGain.index()], 0)) { highestInfoGain = null; // Instantiate maxDistribution maxDistribution = new double[instances.numClasses()]; // Set up enumerator for instances Enumeration instanceEnum = instances.enumerateInstances(); // Tally classes while (instanceEnum.hasMoreElements()) { Instance instance = (Instance) instanceEnum.nextElement(); maxDistribution[(int) instance.classValue()]++; } // Normalize data for easier manipulation Utils.normalize(maxDistribution); // Get the max index of the distrubtion classValue = Utils.maxIndex(maxDistribution); // Save class attribute classAttribute = instances.classAttribute(); } // Create children else { // Split best attribute into bins Instances[] bins = makeBins(instances, highestInfoGain); // Create nodes children = new ID3[highestInfoGain.numValues()]; for (int i = 0; i < highestInfoGain.numValues(); i++) { children[i] = new ID3(); children[i].makeLikeAWhat(bins[i]); } } }
From source file:it.unisa.gitdm.evaluation.WekaEvaluator.java
private static void evaluateModel(String baseFolderPath, String projectName, Classifier pClassifier, Instances pInstances, String pModelName, String pClassifierName) throws Exception { // other options int folds = 10; // randomize data Random rand = new Random(42); Instances randData = new Instances(pInstances); randData.randomize(rand);//from w w w . j a va 2s .c o m if (randData.classAttribute().isNominal()) { randData.stratify(folds); } // perform cross-validation and add predictions Instances predictedData = null; Evaluation eval = new Evaluation(randData); int positiveValueIndexOfClassFeature = 0; for (int n = 0; n < folds; n++) { Instances train = randData.trainCV(folds, n); Instances test = randData.testCV(folds, n); // the above code is used by the StratifiedRemoveFolds filter, the // code below by the Explorer/Experimenter: // Instances train = randData.trainCV(folds, n, rand); int classFeatureIndex = 0; for (int i = 0; i < train.numAttributes(); i++) { if (train.attribute(i).name().equals("isBuggy")) { classFeatureIndex = i; break; } } Attribute classFeature = train.attribute(classFeatureIndex); for (int i = 0; i < classFeature.numValues(); i++) { if (classFeature.value(i).equals("TRUE")) { positiveValueIndexOfClassFeature = i; } } train.setClassIndex(classFeatureIndex); test.setClassIndex(classFeatureIndex); // build and evaluate classifier pClassifier.buildClassifier(train); eval.evaluateModel(pClassifier, test); // add predictions // AddClassification filter = new AddClassification(); // filter.setClassifier(pClassifier); // filter.setOutputClassification(true); // filter.setOutputDistribution(true); // filter.setOutputErrorFlag(true); // filter.setInputFormat(train); // Filter.useFilter(train, filter); // Instances pred = Filter.useFilter(test, filter); // if (predictedData == null) // predictedData = new Instances(pred, 0); // // for (int j = 0; j < pred.numInstances(); j++) // predictedData.add(pred.instance(j)); } double accuracy = (eval.numTruePositives(positiveValueIndexOfClassFeature) + eval.numTrueNegatives(positiveValueIndexOfClassFeature)) / (eval.numTruePositives(positiveValueIndexOfClassFeature) + eval.numFalsePositives(positiveValueIndexOfClassFeature) + eval.numFalseNegatives(positiveValueIndexOfClassFeature) + eval.numTrueNegatives(positiveValueIndexOfClassFeature)); double fmeasure = 2 * ((eval.precision(positiveValueIndexOfClassFeature) * eval.recall(positiveValueIndexOfClassFeature)) / (eval.precision(positiveValueIndexOfClassFeature) + eval.recall(positiveValueIndexOfClassFeature))); File wekaOutput = new File(baseFolderPath + projectName + "/predictors.csv"); PrintWriter pw1 = new PrintWriter(wekaOutput); pw1.write(accuracy + ";" + eval.precision(positiveValueIndexOfClassFeature) + ";" + eval.recall(positiveValueIndexOfClassFeature) + ";" + fmeasure + ";" + eval.areaUnderROC(positiveValueIndexOfClassFeature)); System.out.println(projectName + ";" + pClassifierName + ";" + pModelName + ";" + eval.numTruePositives(positiveValueIndexOfClassFeature) + ";" + eval.numFalsePositives(positiveValueIndexOfClassFeature) + ";" + eval.numFalseNegatives(positiveValueIndexOfClassFeature) + ";" + eval.numTrueNegatives(positiveValueIndexOfClassFeature) + ";" + accuracy + ";" + eval.precision(positiveValueIndexOfClassFeature) + ";" + eval.recall(positiveValueIndexOfClassFeature) + ";" + fmeasure + ";" + eval.areaUnderROC(positiveValueIndexOfClassFeature) + "\n"); }
From source file:j48.BinC45ModelSelection.java
License:Open Source License
/** * Selects C4.5-type split for the given dataset. *//*from w ww. jav a2s.c om*/ public final ClassifierSplitModel selectModel(Instances data) { double minResult; double currentResult; BinC45Split[] currentModel; BinC45Split bestModel = null; NoSplit noSplitModel = null; double averageInfoGain = 0; int validModels = 0; boolean multiVal = true; Distribution checkDistribution; double sumOfWeights; int i; try { // Check if all Instances belong to one class or if not // enough Instances to split. checkDistribution = new Distribution(data); noSplitModel = new NoSplit(checkDistribution); if (Utils.sm(checkDistribution.total(), 2 * m_minNoObj) || Utils.eq(checkDistribution.total(), checkDistribution.perClass(checkDistribution.maxClass()))) return noSplitModel; // Check if all attributes are nominal and have a // lot of values. Enumeration enu = data.enumerateAttributes(); while (enu.hasMoreElements()) { Attribute attribute = (Attribute) enu.nextElement(); if ((attribute.isNumeric()) || (Utils.sm((double) attribute.numValues(), (0.3 * (double) m_allData.numInstances())))) { multiVal = false; break; } } currentModel = new BinC45Split[data.numAttributes()]; sumOfWeights = data.sumOfWeights(); // For each attribute. for (i = 0; i < data.numAttributes(); i++) { // Apart from class attribute. if (i != (data).classIndex()) { // Get models for current attribute. currentModel[i] = new BinC45Split(i, m_minNoObj, sumOfWeights); currentModel[i].buildClassifier(data); // Check if useful split for current attribute // exists and check for enumerated attributes with // a lot of values. if (currentModel[i].checkModel()) if ((data.attribute(i).isNumeric()) || (multiVal || Utils.sm((double) data.attribute(i).numValues(), (0.3 * (double) m_allData.numInstances())))) { averageInfoGain = averageInfoGain + currentModel[i].infoGain(); validModels++; } } else currentModel[i] = null; } // Check if any useful split was found. if (validModels == 0) return noSplitModel; averageInfoGain = averageInfoGain / (double) validModels; // Find "best" attribute to split on. minResult = 0; for (i = 0; i < data.numAttributes(); i++) { if ((i != (data).classIndex()) && (currentModel[i].checkModel())) // Use 1E-3 here to get a closer approximation to the // original // implementation. if ((currentModel[i].infoGain() >= (averageInfoGain - 1E-3)) && Utils.gr(currentModel[i].gainRatio(), minResult)) { bestModel = currentModel[i]; minResult = currentModel[i].gainRatio(); } } // Check if useful split was found. if (Utils.eq(minResult, 0)) return noSplitModel; // Add all Instances with unknown values for the corresponding // attribute to the distribution for the model, so that // the complete distribution is stored with the model. bestModel.distribution().addInstWithUnknown(data, bestModel.attIndex()); // Set the split point analogue to C45 if attribute numeric. bestModel.setSplitPoint(m_allData); return bestModel; } catch (Exception e) { e.printStackTrace(); } return null; }
From source file:j48.BinC45Split.java
License:Open Source License
/** * Creates a C4.5-type split on the given data. * * @exception Exception if something goes wrong *//*w ww .j av a 2 s. c o m*/ public void buildClassifier(Instances trainInstances) throws Exception { // Initialize the remaining instance variables. m_numSubsets = 0; m_splitPoint = Double.MAX_VALUE; m_infoGain = 0; m_gainRatio = 0; // Different treatment for enumerated and numeric // attributes. if (trainInstances.attribute(m_attIndex).isNominal()) { handleEnumeratedAttribute(trainInstances); } else { trainInstances.sort(trainInstances.attribute(m_attIndex)); handleNumericAttribute(trainInstances); } }
From source file:j48.BinC45Split.java
License:Open Source License
/** * Creates split on enumerated attribute. * * @exception Exception if something goes wrong *//*from ww w.ja v a 2s . co m*/ private void handleEnumeratedAttribute(Instances trainInstances) throws Exception { Distribution newDistribution, secondDistribution; int numAttValues; double currIG, currGR; Instance instance; int i; numAttValues = trainInstances.attribute(m_attIndex).numValues(); newDistribution = new Distribution(numAttValues, trainInstances.numClasses()); // Only Instances with known values are relevant. Enumeration enu = trainInstances.enumerateInstances(); while (enu.hasMoreElements()) { instance = (Instance) enu.nextElement(); if (!instance.isMissing(m_attIndex)) newDistribution.add((int) instance.value(m_attIndex), instance); } m_distribution = newDistribution; // For all values for (i = 0; i < numAttValues; i++) { if (Utils.grOrEq(newDistribution.perBag(i), m_minNoObj)) { secondDistribution = new Distribution(newDistribution, i); // Check if minimum number of Instances in the two // subsets. if (secondDistribution.check(m_minNoObj)) { m_numSubsets = 2; currIG = m_infoGainCrit.splitCritValue(secondDistribution, m_sumOfWeights); currGR = m_gainRatioCrit.splitCritValue(secondDistribution, m_sumOfWeights, currIG); if ((i == 0) || Utils.gr(currGR, m_gainRatio)) { m_gainRatio = currGR; m_infoGain = currIG; m_splitPoint = (double) i; m_distribution = secondDistribution; } } } } }
From source file:j48.BinC45Split.java
License:Open Source License
/** * Prints left side of condition./*from w w w .j a v a 2s.c o m*/ * * @param data the data to get the attribute name from. * @return the attribute name */ public final String leftSide(Instances data) { return data.attribute(m_attIndex).name(); }