Example usage for weka.core Instances attribute

List of usage examples for weka.core Instances attribute

Introduction

In this page you can find the example usage for weka.core Instances attribute.

Prototype

publicAttribute attribute(String name) 

Source Link

Document

Returns an attribute given its name.

Usage

From source file:classifier.CustomStringToWordVector.java

License:Open Source License

/**
 * determines the selected range.//from   w  w  w  .j a  va 2 s  .  c  o m
 */
private void determineSelectedRange() {

    Instances inputFormat = getInputFormat();

    // Calculate the default set of fields to convert
    if (m_SelectedRange == null) {
        StringBuffer fields = new StringBuffer();
        for (int j = 0; j < inputFormat.numAttributes(); j++) {
            if (inputFormat.attribute(j).type() == Attribute.STRING)
                fields.append((j + 1) + ",");
        }
        m_SelectedRange = new Range(fields.toString());
    }
    m_SelectedRange.setUpper(inputFormat.numAttributes() - 1);

    // Prevent the user from converting non-string fields
    StringBuffer fields = new StringBuffer();
    for (int j = 0; j < inputFormat.numAttributes(); j++) {
        if (m_SelectedRange.isInRange(j) && inputFormat.attribute(j).type() == Attribute.STRING)
            fields.append((j + 1) + ",");
    }
    m_SelectedRange.setRanges(fields.toString());
    m_SelectedRange.setUpper(inputFormat.numAttributes() - 1);

    // System.err.println("Selected Range: " +
    // getSelectedRange().getRanges());
}

From source file:classifier.SentenceBasedTextDirectoryLoader.java

License:Open Source License

/**
 * Return the full data set. If the structure hasn't yet been determined by
 * a call to getStructure then method should do so before processing the
 * rest of the data set.// www. jav a2  s.  c  o m
 * 
 * @return the structure of the data set as an empty set of Instances
 * @throws IOException
 *             if there is no source or parsing fails
 */
@Override
public Instances getDataSet() throws IOException {
    if (getDirectory() == null)
        throw new IOException("No directory/source has been specified");

    String directoryPath = getDirectory().getAbsolutePath();
    ArrayList<String> classes = new ArrayList<String>();
    ArrayList<String> filenames = new ArrayList<String>();
    Enumeration enm = getStructure().classAttribute().enumerateValues();
    while (enm.hasMoreElements())
        classes.add((String) enm.nextElement());

    Instances data = getStructure();
    int fileCount = 0;
    // each class is actually the filename - this is preserved around weka,
    // so its useful for tracking associations later and using as an "index"
    //

    for (int k = 0; k < classes.size(); k++) {
        String subdirPath = (String) classes.get(k);
        File subdir = new File(directoryPath + File.separator + subdirPath);
        String[] files = subdir.list();
        for (int j = 0; j < files.length; j++) {

            try {
                fileCount++;
                if (getDebug())
                    System.err.println("processing " + fileCount + " : " + files[j]);

                File txt = new File(directoryPath + File.separator + subdirPath + File.separator + files[j]);
                filenames.add(files[j]);
                BufferedInputStream is;
                is = new BufferedInputStream(new FileInputStream(txt));
                StringBuffer txtStr = new StringBuffer();
                int c;
                while ((c = is.read()) != -1) {
                    txtStr.append((char) c);
                }

                // Here is my extension to Text Directory Loader.
                String regexSentenceSplit = "(\\n)";
                String rawtext = txtStr.toString();
                rawtext = rawtext.toLowerCase();
                rawtext.trim();

                // split the sentences
                String[] sentences = rawtext.split(regexSentenceSplit);
                for (String sentence : sentences) {
                    double[] newInst = null;
                    if (m_OutputFilename)
                        newInst = new double[3];
                    else
                        newInst = new double[2];

                    newInst[0] = (double) data.attribute(0).addStringValue(sentence + "\n");
                    if (m_OutputFilename)
                        newInst[1] = (double) data.attribute(1)
                                .addStringValue(subdirPath + File.separator + files[j]);
                    newInst[data.classIndex()] = (double) k;
                    data.add(new DenseInstance(1.0, newInst));
                    // }
                }

                writeFilenames(directoryPath, filenames);

            } catch (Exception e) {
                System.err.println("failed to convert file: " + directoryPath + File.separator + files[j]);
            }
        }
    }

    // this.m_structure.setClassIndex(-1);
    return data;
}

From source file:classifiers.ComplexClassifier.java

@Override
public void train(Instances inst) throws Exception {
    Knoten[] k = Model.getDieknoten();/*w  ww .ja va 2  s  . c o m*/
    Enumeration<Attribute> enu = inst.enumerateAttributes();
    int attindex = 0;
    while (enu.hasMoreElements()) {
        Attribute att = enu.nextElement();
        if (k[attindex].hatEltern()) {

            switch (att.type()) {
            case Attribute.NUMERIC: {

                for (int i = 0; i < k[attindex].anzahlEltern(); i++) {
                    Attribute a = inst.attribute(k[attindex].getEltern(i).getID());
                    int c = a.index();
                    switch (a.type()) {
                    case Attribute.NUMERIC:
                        list.add(attindex, (new NumericNumericDistribution(inst, attindex, c)));
                        break;
                    case (Attribute.NOMINAL):
                        list.add(attindex, new NumericNominalDistribution(inst, attindex, c));
                        break;
                    case (Attribute.STRING):
                        list.add(attindex, new NumericNominalDistribution(inst, attindex, c));
                        break;
                    default:
                        throw new Exception("Attributetype unbekannt");
                    }
                }

            }
                break;
            case Attribute.NOMINAL: {
                for (int i = 0; i < k[attindex].anzahlEltern(); i++) {

                    Attribute a = inst.attribute(k[attindex].getEltern(i).getID());

                    int c = a.index();

                    switch (a.type()) {

                    case Attribute.NUMERIC:
                        list.add(attindex, new NumericNominalDistribution(inst, attindex, c));
                        break;
                    case (Attribute.NOMINAL):
                        list.add(attindex, new NominalNominalDistribution(inst, attindex, c));
                        break;
                    case (Attribute.STRING):
                        list.add(attindex, new NominalNominalDistribution(inst, attindex, c));
                        break;
                    default: {
                        throw new Exception("Attributetype unbekannt");
                    }
                    }
                }
            }
                break;
            }
        } else {

            switch (att.type()) {
            case Attribute.NUMERIC:

                list.add(attindex, new NumericDistribution(inst, attindex));
                break;
            case Attribute.NOMINAL:

                list.add(attindex, new NominalDistribution(inst, attindex));
                break;
            case Attribute.STRING:
                list.add(attindex, new NominalDistribution(inst, attindex));
                break;
            default:
                throw new Exception("Attributetype unbekannt");

            }
        }
        attindex++;
    }

    for (int i = 0; i < inst.numClasses(); i++) {
        for (int j = 0; j < inst.numInstances(); j++) {
            if (inst.instance(j).classValue() == i) {
                Classparam[i]++;
            }

        }

    }

    for (int i = 0; i < inst.numClasses(); i++) {
        Classparam[i] /= inst.numInstances();
    }

}

From source file:classifiers.ComplexClassifier.java

@Override
public double[][] test(Instances testinst) {
    double count = 0;
    long anfangszeit = System.currentTimeMillis();
    ;/*from www. j a v a2 s  . co  m*/
    long endzeit;
    double[][] ausgabe = new double[1][2];
    if (testinst.numAttributes() != 0) {

        testinst.setClass(testinst.attribute(testinst.numAttributes() - 1));

        for (int i = 0; i < testinst.numInstances(); i++) {

            if (!Classify(testinst.instance(i))) {
                count++;
            } else {
            }

        }

        endzeit = System.currentTimeMillis();
        ausgabe[0][0] = (count / testinst.numInstances()) * 100;

        ausgabe[0][1] = ((endzeit - anfangszeit));
        // System.out.println(testinst);
        return ausgabe;
    } else {
        // System.out.println(testinst);
        return ausgabe;
    }

}

From source file:classifiers.ComplexClassifierZufall.java

@Override
public void train(Instances inst) throws Exception {

    Knoten[] k = Model.getDieknoten();//from   w w w . ja va 2 s  . c o  m
    Enumeration<Attribute> enu = inst.enumerateAttributes();
    int attindex = 0;
    while (enu.hasMoreElements()) {
        Attribute att = enu.nextElement();
        if (k[attindex].hatEltern()) {

            switch (att.type()) {
            case Attribute.NUMERIC: {

                for (int i = 0; i < k[attindex].anzahlEltern(); i++) {
                    Attribute a = inst.attribute(k[attindex].getEltern(i).getID());
                    int c = a.index();
                    switch (a.type()) {
                    case Attribute.NUMERIC:
                        list.add(attindex, (new NumericNumericDistribution(inst, attindex, c)));
                        break;
                    case (Attribute.NOMINAL):
                        list.add(attindex, new NumericNominalDistribution(inst, attindex, c));
                        break;
                    case (Attribute.STRING):
                        list.add(attindex, new NumericNominalDistribution(inst, attindex, c));
                        break;
                    default:
                        throw new Exception("Attributetype unbekannt");
                    }
                }

            }
                break;
            case Attribute.NOMINAL: {
                for (int i = 0; i < k[attindex].anzahlEltern(); i++) {

                    Attribute a = inst.attribute(k[attindex].getEltern(i).getID());

                    int c = a.index();

                    switch (a.type()) {

                    case Attribute.NUMERIC:
                        list.add(attindex, new NumericNominalDistribution(inst, attindex, c));
                        break;
                    case (Attribute.NOMINAL):
                        list.add(attindex, new NominalNominalDistribution(inst, attindex, c));
                        break;
                    case (Attribute.STRING):
                        list.add(attindex, new NominalNominalDistribution(inst, attindex, c));
                        break;
                    default: {
                        throw new Exception("Attributetype unbekannt");
                    }
                    }
                }
            }
                break;
            }
        } else {

            switch (att.type()) {
            case Attribute.NUMERIC:

                list.add(attindex, new NumericDistribution(inst, attindex));
                break;
            case Attribute.NOMINAL:

                list.add(attindex, new NominalDistribution(inst, attindex));
                break;
            case Attribute.STRING:
                list.add(attindex, new NominalDistribution(inst, attindex));
                break;
            default:
                throw new Exception("Attributetype unbekannt");

            }
        }
        attindex++;
    }

    for (int i = 0; i < inst.numClasses(); i++) {
        for (int j = 0; j < inst.numInstances(); j++) {
            if (inst.instance(j).classValue() == i) {
                Classparam[i]++;
            }

        }

    }

    for (int i = 0; i < inst.numClasses(); i++) {
        Classparam[i] /= inst.numInstances();
    }

}

From source file:classifiers.ComplexClassifierZufall.java

@Override
@SuppressWarnings("empty-statement")
public double[][] test(Instances testinst) {
    double count = 0;
    long anfangszeit = System.currentTimeMillis();
    ;/*  w ww.  j  av  a  2s.com*/
    long endzeit;
    double[][] ausgabe = new double[1][2];
    if (testinst.numAttributes() != 0) {

        testinst.setClass(testinst.attribute(testinst.numAttributes() - 1));

        for (int i = 0; i < testinst.numInstances(); i++) {

            if (!Classify(testinst.instance(i))) {
                count++;
            } else {
            }

        }

        endzeit = System.currentTimeMillis();
        ausgabe[0][0] = (count / testinst.numInstances()) * 100;

        ausgabe[0][1] = ((endzeit - anfangszeit));
        // System.out.println(testinst);
        return ausgabe;
    } else {
        // System.out.println(testinst);
        return ausgabe;
    }

}

From source file:clusterer.SimpleKMeansWithSilhouette.java

License:Open Source License

/**
 * Generates a clusterer. Has to initialize all fields of the clusterer that
 * are not being set via options./*from  w  w w.  j a  v a 2s. c o m*/
 * 
 * @param data set of instances serving as training data
 * @throws Exception if the clusterer has not been generated successfully
 */
@Override
public void buildClusterer(Instances data) throws Exception {

    m_canopyClusters = null;

    // can clusterer handle the data?
    getCapabilities().testWithFail(data);

    m_Iterations = 0;

    m_ReplaceMissingFilter = new ReplaceMissingValues();
    Instances instances = new Instances(data);

    instances.setClassIndex(-1);
    if (!m_dontReplaceMissing) {
        m_ReplaceMissingFilter.setInputFormat(instances);
        instances = Filter.useFilter(instances, m_ReplaceMissingFilter);
    }

    m_ClusterNominalCounts = new double[m_NumClusters][instances.numAttributes()][];
    m_ClusterMissingCounts = new double[m_NumClusters][instances.numAttributes()];
    if (m_displayStdDevs) {
        m_FullStdDevs = instances.variances();
    }

    m_FullMeansOrMediansOrModes = moveCentroid(0, instances, true, false);

    m_FullMissingCounts = m_ClusterMissingCounts[0];
    m_FullNominalCounts = m_ClusterNominalCounts[0];
    double sumOfWeights = instances.sumOfWeights();
    for (int i = 0; i < instances.numAttributes(); i++) {
        if (instances.attribute(i).isNumeric()) {
            if (m_displayStdDevs) {
                m_FullStdDevs[i] = Math.sqrt(m_FullStdDevs[i]);
            }
            if (m_FullMissingCounts[i] == sumOfWeights) {
                m_FullMeansOrMediansOrModes[i] = Double.NaN; // mark missing as mean
            }
        } else {
            if (m_FullMissingCounts[i] > m_FullNominalCounts[i][Utils.maxIndex(m_FullNominalCounts[i])]) {
                m_FullMeansOrMediansOrModes[i] = -1; // mark missing as most common
                                                     // value
            }
        }
    }

    m_ClusterCentroids = new Instances(instances, m_NumClusters);
    int[] clusterAssignments = new int[instances.numInstances()];

    if (m_PreserveOrder) {
        m_Assignments = clusterAssignments;
    }

    m_DistanceFunction.setInstances(instances);

    Random RandomO = new Random(getSeed());
    int instIndex;
    HashMap<DecisionTableHashKey, Integer> initC = new HashMap<DecisionTableHashKey, Integer>();
    DecisionTableHashKey hk = null;

    Instances initInstances = null;
    if (m_PreserveOrder) {
        initInstances = new Instances(instances);
    } else {
        initInstances = instances;
    }

    if (m_speedUpDistanceCompWithCanopies) {
        m_canopyClusters = new Canopy();
        m_canopyClusters.setNumClusters(m_NumClusters);
        m_canopyClusters.setSeed(getSeed());
        m_canopyClusters.setT2(getCanopyT2());
        m_canopyClusters.setT1(getCanopyT1());
        m_canopyClusters.setMaxNumCandidateCanopiesToHoldInMemory(getCanopyMaxNumCanopiesToHoldInMemory());
        m_canopyClusters.setPeriodicPruningRate(getCanopyPeriodicPruningRate());
        m_canopyClusters.setMinimumCanopyDensity(getCanopyMinimumCanopyDensity());
        m_canopyClusters.setDebug(getDebug());
        m_canopyClusters.buildClusterer(initInstances);
        // System.err.println(m_canopyClusters);
        m_centroidCanopyAssignments = new ArrayList<long[]>();
        m_dataPointCanopyAssignments = new ArrayList<long[]>();
    }

    if (m_initializationMethod == KMEANS_PLUS_PLUS) {
        kMeansPlusPlusInit(initInstances);

        m_initialStartPoints = new Instances(m_ClusterCentroids);
    } else if (m_initializationMethod == CANOPY) {
        canopyInit(initInstances);

        m_initialStartPoints = new Instances(m_canopyClusters.getCanopies());
    } else if (m_initializationMethod == FARTHEST_FIRST) {
        farthestFirstInit(initInstances);

        m_initialStartPoints = new Instances(m_ClusterCentroids);
    } else {
        // random
        for (int j = initInstances.numInstances() - 1; j >= 0; j--) {
            instIndex = RandomO.nextInt(j + 1);
            hk = new DecisionTableHashKey(initInstances.instance(instIndex), initInstances.numAttributes(),
                    true);
            if (!initC.containsKey(hk)) {
                m_ClusterCentroids.add(initInstances.instance(instIndex));
                initC.put(hk, null);
            }
            initInstances.swap(j, instIndex);

            if (m_ClusterCentroids.numInstances() == m_NumClusters) {
                break;
            }
        }

        m_initialStartPoints = new Instances(m_ClusterCentroids);
    }

    if (m_speedUpDistanceCompWithCanopies) {
        // assign canopies to training data
        for (int i = 0; i < instances.numInstances(); i++) {
            m_dataPointCanopyAssignments.add(m_canopyClusters.assignCanopies(instances.instance(i)));
        }
    }

    m_NumClusters = m_ClusterCentroids.numInstances();

    // removing reference
    initInstances = null;

    int i;
    boolean converged = false;
    int emptyClusterCount;
    Instances[] tempI = new Instances[m_NumClusters];
    m_squaredErrors = new double[m_NumClusters];
    m_ClusterNominalCounts = new double[m_NumClusters][instances.numAttributes()][0];
    m_ClusterMissingCounts = new double[m_NumClusters][instances.numAttributes()];
    startExecutorPool();

    while (!converged) {
        if (m_speedUpDistanceCompWithCanopies) {
            // re-assign canopies to the current cluster centers
            m_centroidCanopyAssignments.clear();
            for (int kk = 0; kk < m_ClusterCentroids.numInstances(); kk++) {
                m_centroidCanopyAssignments
                        .add(m_canopyClusters.assignCanopies(m_ClusterCentroids.instance(kk)));
            }
        }

        emptyClusterCount = 0;
        m_Iterations++;
        converged = true;

        if (m_executionSlots <= 1 || instances.numInstances() < 2 * m_executionSlots) {
            for (i = 0; i < instances.numInstances(); i++) {
                Instance toCluster = instances.instance(i);
                int newC = clusterProcessedInstance(toCluster, false, true,
                        m_speedUpDistanceCompWithCanopies ? m_dataPointCanopyAssignments.get(i) : null);
                if (newC != clusterAssignments[i]) {
                    converged = false;
                }
                clusterAssignments[i] = newC;
            }
        } else {
            converged = launchAssignToClusters(instances, clusterAssignments);
        }

        // update centroids
        m_ClusterCentroids = new Instances(instances, m_NumClusters);
        for (i = 0; i < m_NumClusters; i++) {
            tempI[i] = new Instances(instances, 0);
        }
        for (i = 0; i < instances.numInstances(); i++) {
            tempI[clusterAssignments[i]].add(instances.instance(i));
        }
        if (m_executionSlots <= 1 || instances.numInstances() < 2 * m_executionSlots) {
            for (i = 0; i < m_NumClusters; i++) {
                if (tempI[i].numInstances() == 0) {
                    // empty cluster
                    emptyClusterCount++;
                } else {
                    moveCentroid(i, tempI[i], true, true);
                }
            }
        } else {
            emptyClusterCount = launchMoveCentroids(tempI);
        }

        if (m_Iterations == m_MaxIterations) {
            converged = true;
        }

        if (emptyClusterCount > 0) {
            m_NumClusters -= emptyClusterCount;
            if (converged) {
                Instances[] t = new Instances[m_NumClusters];
                int index = 0;
                for (int k = 0; k < tempI.length; k++) {
                    if (tempI[k].numInstances() > 0) {
                        t[index] = tempI[k];

                        for (i = 0; i < tempI[k].numAttributes(); i++) {
                            m_ClusterNominalCounts[index][i] = m_ClusterNominalCounts[k][i];
                        }
                        index++;
                    }
                }
                tempI = t;
            } else {
                tempI = new Instances[m_NumClusters];
            }
        }

        if (!converged) {
            m_ClusterNominalCounts = new double[m_NumClusters][instances.numAttributes()][0];
        }
    }

    // calculate errors
    if (!m_FastDistanceCalc) {
        for (i = 0; i < instances.numInstances(); i++) {
            clusterProcessedInstance(instances.instance(i), true, false, null);
        }
    }

    if (m_displayStdDevs) {
        m_ClusterStdDevs = new Instances(instances, m_NumClusters);
    }
    m_ClusterSizes = new double[m_NumClusters];
    for (i = 0; i < m_NumClusters; i++) {
        if (m_displayStdDevs) {
            double[] vals2 = tempI[i].variances();
            for (int j = 0; j < instances.numAttributes(); j++) {
                if (instances.attribute(j).isNumeric()) {
                    vals2[j] = Math.sqrt(vals2[j]);
                } else {
                    vals2[j] = Utils.missingValue();
                }
            }
            m_ClusterStdDevs.add(new DenseInstance(1.0, vals2));
        }
        m_ClusterSizes[i] = tempI[i].sumOfWeights();
    }

    m_executorPool.shutdown();

    // save memory!
    m_DistanceFunction.clean();

    // Calculate Silhouette Coefficient
    SilCoeff = new double[instances.numInstances()];
    AvgSilCoeff = 0;
    for (int z = 0; z < instances.numInstances(); z++) {
        double[] distance = new double[m_NumClusters];
        Arrays.fill(distance, 0.0);
        //Sum
        for (int y = 0; y < instances.numInstances(); y++) {
            distance[clusterAssignments[y]] += m_DistanceFunction.distance(instances.get(z), instances.get(y));
        }
        //Average
        for (int x = 0; x < m_NumClusters; x++) {
            distance[x] = distance[x] / m_ClusterSizes[x];
        }
        double a = distance[clusterAssignments[z]];
        distance[clusterAssignments[z]] = Double.MAX_VALUE;
        Arrays.sort(distance);
        double b = distance[0];
        SilCoeff[z] = (b - a) / Math.max(a, b);
        AvgSilCoeff += SilCoeff[z];
    }
    AvgSilCoeff = AvgSilCoeff / instances.numInstances();
    //System.out.println("AvgSilCoeff: " + AvgSilCoeff);
}

From source file:clusterer.SimpleKMeansWithSilhouette.java

License:Open Source License

/**
 * Move the centroid to it's new coordinates. Generate the centroid
 * coordinates based on it's members (objects assigned to the cluster of the
 * centroid) and the distance function being used.
 * /*  ww w. j a v  a  2 s. co  m*/
 * @param centroidIndex index of the centroid which the coordinates will be
 *          computed
 * @param members the objects that are assigned to the cluster of this
 *          centroid
 * @param updateClusterInfo if the method is supposed to update the m_Cluster
 *          arrays
 * @param addToCentroidInstances true if the method is to add the computed
 *          coordinates to the Instances holding the centroids
 * @return the centroid coordinates
 */
protected double[] moveCentroid(int centroidIndex, Instances members, boolean updateClusterInfo,
        boolean addToCentroidInstances) {

    double[] vals = new double[members.numAttributes()];
    double[][] nominalDists = new double[members.numAttributes()][];
    double[] weightMissing = new double[members.numAttributes()];
    double[] weightNonMissing = new double[members.numAttributes()];

    // Quickly calculate some relevant statistics 
    for (int j = 0; j < members.numAttributes(); j++) {
        if (members.attribute(j).isNominal()) {
            nominalDists[j] = new double[members.attribute(j).numValues()];
        }
    }
    for (Instance inst : members) {
        for (int j = 0; j < members.numAttributes(); j++) {
            if (inst.isMissing(j)) {
                weightMissing[j] += inst.weight();
            } else {
                weightNonMissing[j] += inst.weight();
                if (members.attribute(j).isNumeric()) {
                    vals[j] += inst.weight() * inst.value(j); // Will be overwritten in Manhattan case
                } else {
                    nominalDists[j][(int) inst.value(j)] += inst.weight();
                }
            }
        }
    }
    for (int j = 0; j < members.numAttributes(); j++) {
        if (members.attribute(j).isNumeric()) {
            if (weightNonMissing[j] > 0) {
                vals[j] /= weightNonMissing[j];
            } else {
                vals[j] = Utils.missingValue();
            }
        } else {
            double max = -Double.MAX_VALUE;
            double maxIndex = -1;
            for (int i = 0; i < nominalDists[j].length; i++) {
                if (nominalDists[j][i] > max) {
                    max = nominalDists[j][i];
                    maxIndex = i;
                }
                if (max < weightMissing[j]) {
                    vals[j] = Utils.missingValue();
                } else {
                    vals[j] = maxIndex;
                }
            }
        }
    }

    if (m_DistanceFunction instanceof ManhattanDistance) {

        // Need to replace means by medians
        Instances sortedMembers = null;
        int middle = (members.numInstances() - 1) / 2;
        boolean dataIsEven = ((members.numInstances() % 2) == 0);
        if (m_PreserveOrder) {
            sortedMembers = members;
        } else {
            sortedMembers = new Instances(members);
        }
        for (int j = 0; j < members.numAttributes(); j++) {
            if ((weightNonMissing[j] > 0) && members.attribute(j).isNumeric()) {
                // singleton special case
                if (members.numInstances() == 1) {
                    vals[j] = members.instance(0).value(j);
                } else {
                    vals[j] = sortedMembers.kthSmallestValue(j, middle + 1);
                    if (dataIsEven) {
                        vals[j] = (vals[j] + sortedMembers.kthSmallestValue(j, middle + 2)) / 2;
                    }
                }
            }
        }
    }

    if (updateClusterInfo) {
        for (int j = 0; j < members.numAttributes(); j++) {
            m_ClusterMissingCounts[centroidIndex][j] = weightMissing[j];
            m_ClusterNominalCounts[centroidIndex][j] = nominalDists[j];
        }
    }

    if (addToCentroidInstances) {
        m_ClusterCentroids.add(new DenseInstance(1.0, vals));
    }

    return vals;
}

From source file:cn.edu.xjtu.dbmine.TextDirectoryLoader.java

License:Open Source License

/**
 * Return the full data set. If the structure hasn't yet been determined
 * by a call to getStructure then method should do so before processing
 * the rest of the data set.//from   ww  w  .  ja  v  a 2 s  . com
 *
 * @return the structure of the data set as an empty set of Instances
 * @throws IOException if there is no source or parsing fails
 */
public Instances getDataSet() throws IOException {
    if (getDirectory() == null)
        throw new IOException("No directory/source has been specified");

    String directoryPath = getDirectory().getAbsolutePath();
    FastVector classes = new FastVector();
    Enumeration enm = getStructure().classAttribute().enumerateValues();
    while (enm.hasMoreElements())
        classes.addElement(enm.nextElement());

    Instances data = getStructure();
    int fileCount = 0;
    for (int k = 0; k < classes.size(); k++) {
        String subdirPath = (String) classes.elementAt(k);
        File subdir = new File(directoryPath + File.separator + subdirPath);
        String[] files = subdir.list();
        for (int j = 0; j < files.length; j++) {
            try {
                fileCount++;
                if (getDebug())
                    System.err.println("processing " + fileCount + " : " + subdirPath + " : " + files[j]);

                double[] newInst = null;
                if (m_OutputFilename)
                    newInst = new double[3];
                else
                    newInst = new double[2];
                File txt = new File(directoryPath + File.separator + subdirPath + File.separator + files[j]);
                BufferedInputStream is;
                is = new BufferedInputStream(new FileInputStream(txt));
                StringBuffer txtStr = new StringBuffer();
                int c;
                /*while ((c = is.read()) != -1) {
                  txtStr.append((char) c);
                }*/
                FileReader fr = new FileReader(txt);
                BufferedReader br = new BufferedReader(fr);
                String line;
                while ((line = br.readLine()) != null) {
                    txtStr.append(line + "\n");
                }

                newInst[0] = (double) data.attribute(0).addStringValue(txtStr.toString());
                if (m_OutputFilename)
                    newInst[1] = (double) data.attribute(1)
                            .addStringValue(subdirPath + File.separator + files[j]);
                newInst[data.classIndex()] = (double) k;
                data.add(new Instance(1.0, newInst));
                is.close();
            } catch (Exception e) {
                System.err.println("failed to convert file: " + directoryPath + File.separator + subdirPath
                        + File.separator + files[j]);
            }
        }
    }

    return data;
}

From source file:cn.edu.xmu.dm.d3c.clustering.SimpleKMeans.java

License:Open Source License

/**
 * Generates a clusterer. Has to initialize all fields of the clusterer
 * that are not being set via options.//ww w . j  a  v  a 2 s.c o  m
 *
 * @param data set of instances serving as training data 
 * @throws Exception if the clusterer has not been 
 * generated successfully
 */
public void buildClusterer(Instances data) throws Exception {

    // can clusterer handle the data?
    getCapabilities().testWithFail(data);

    m_Iterations = 0;

    m_ReplaceMissingFilter = new ReplaceMissingValues();
    Instances instances = new Instances(data);

    instances.setClassIndex(-1);
    if (!m_dontReplaceMissing) {
        m_ReplaceMissingFilter.setInputFormat(instances);
        instances = Filter.useFilter(instances, m_ReplaceMissingFilter);
    }

    m_FullMissingCounts = new int[instances.numAttributes()];
    if (m_displayStdDevs) {
        m_FullStdDevs = new double[instances.numAttributes()];
    }
    m_FullNominalCounts = new int[instances.numAttributes()][0];

    m_FullMeansOrMediansOrModes = moveCentroid(0, instances, false);
    for (int i = 0; i < instances.numAttributes(); i++) {
        m_FullMissingCounts[i] = instances.attributeStats(i).missingCount;
        if (instances.attribute(i).isNumeric()) {
            if (m_displayStdDevs) {
                m_FullStdDevs[i] = Math.sqrt(instances.variance(i));
            }
            if (m_FullMissingCounts[i] == instances.numInstances()) {
                m_FullMeansOrMediansOrModes[i] = Double.NaN; // mark missing as mean
            }
        } else {
            m_FullNominalCounts[i] = instances.attributeStats(i).nominalCounts;
            if (m_FullMissingCounts[i] > m_FullNominalCounts[i][Utils.maxIndex(m_FullNominalCounts[i])]) {
                m_FullMeansOrMediansOrModes[i] = -1; // mark missing as most common value
            }
        }
    }

    m_ClusterCentroids = new Instances(instances, m_NumClusters);
    int[] clusterAssignments = new int[instances.numInstances()];

    if (m_PreserveOrder)
        m_Assignments = clusterAssignments;

    m_DistanceFunction.setInstances(instances);

    Random RandomO = new Random(getSeed());
    int instIndex;
    HashMap initC = new HashMap();
    DecisionTableHashKey hk = null;

    Instances initInstances = null;
    if (m_PreserveOrder)
        initInstances = new Instances(instances);
    else
        initInstances = instances;

    if (m_initializeWithKMeansPlusPlus) {
        kMeansPlusPlusInit(initInstances);
    } else {
        for (int j = initInstances.numInstances() - 1; j >= 0; j--) {
            instIndex = RandomO.nextInt(j + 1);
            hk = new DecisionTableHashKey(initInstances.instance(instIndex), initInstances.numAttributes(),
                    true);
            if (!initC.containsKey(hk)) {
                m_ClusterCentroids.add(initInstances.instance(instIndex));
                initC.put(hk, null);
            }
            initInstances.swap(j, instIndex);

            if (m_ClusterCentroids.numInstances() == m_NumClusters) {
                break;
            }
        }
    }

    m_NumClusters = m_ClusterCentroids.numInstances();

    //removing reference
    initInstances = null;

    int i;
    boolean converged = false;
    int emptyClusterCount;
    Instances[] tempI = new Instances[m_NumClusters];
    m_squaredErrors = new double[m_NumClusters];
    m_ClusterNominalCounts = new int[m_NumClusters][instances.numAttributes()][0];
    m_ClusterMissingCounts = new int[m_NumClusters][instances.numAttributes()];
    while (!converged) {
        emptyClusterCount = 0;
        m_Iterations++;
        converged = true;
        for (i = 0; i < instances.numInstances(); i++) {
            Instance toCluster = instances.instance(i);
            int newC = clusterProcessedInstance(toCluster, false, true);
            if (newC != clusterAssignments[i]) {
                converged = false;
            }
            clusterAssignments[i] = newC;
        }

        // update centroids
        m_ClusterCentroids = new Instances(instances, m_NumClusters);
        for (i = 0; i < m_NumClusters; i++) {
            tempI[i] = new Instances(instances, 0);
        }
        for (i = 0; i < instances.numInstances(); i++) {
            tempI[clusterAssignments[i]].add(instances.instance(i));
        }
        for (i = 0; i < m_NumClusters; i++) {
            if (tempI[i].numInstances() == 0) {
                // empty cluster
                emptyClusterCount++;
            } else {
                moveCentroid(i, tempI[i], true);
            }
        }

        if (emptyClusterCount > 0) {
            m_NumClusters -= emptyClusterCount;
            if (converged) {
                Instances[] t = new Instances[m_NumClusters];
                int index = 0;
                for (int k = 0; k < tempI.length; k++) {
                    if (tempI[k].numInstances() > 0) {
                        t[index++] = tempI[k];
                    }
                }
                tempI = t;
            } else {
                tempI = new Instances[m_NumClusters];
            }
        }

        if (m_Iterations == m_MaxIterations)
            converged = true;

        if (!converged) {
            m_ClusterNominalCounts = new int[m_NumClusters][instances.numAttributes()][0];
        }
    }

    // calculate errors
    if (!m_FastDistanceCalc) {
        for (i = 0; i < instances.numInstances(); i++) {
            clusterProcessedInstance(instances.instance(i), true, false);
        }
    }

    if (m_displayStdDevs) {
        m_ClusterStdDevs = new Instances(instances, m_NumClusters);
    }
    m_ClusterSizes = new int[m_NumClusters];
    for (i = 0; i < m_NumClusters; i++) {
        if (m_displayStdDevs) {
            double[] vals2 = new double[instances.numAttributes()];
            for (int j = 0; j < instances.numAttributes(); j++) {
                if (instances.attribute(j).isNumeric()) {
                    vals2[j] = Math.sqrt(tempI[i].variance(j));
                } else {
                    vals2[j] = Utils.missingValue();
                }
            }
            m_ClusterStdDevs.add(new DenseInstance(1.0, vals2));
        }
        m_ClusterSizes[i] = tempI[i].numInstances();
    }
}