Example usage for weka.core Instance isMissingSparse

List of usage examples for weka.core Instance isMissingSparse

Introduction

In this page you can find the example usage for weka.core Instance isMissingSparse.

Prototype

public boolean isMissingSparse(int indexOfIndex);

Source Link

Document

Tests if a specific value is "missing" in the sparse representation.

Usage

From source file:cba.ItemSet.java

License:Open Source License

/**
 * Checks if an instance contains an item set.
 *
 * @param instance the instance to be tested
 * @return true if the given instance contains this item set
 *//*w  w w . j  av a  2 s.  com*/

public boolean containedBy(Instance instance) {

    if (instance instanceof weka.core.SparseInstance && m_treatZeroAsMissing) {
        int numInstVals = instance.numValues();
        int numItemSetVals = m_items.length;

        for (int p1 = 0, p2 = 0; p1 < numInstVals || p2 < numItemSetVals;) {
            int instIndex = Integer.MAX_VALUE;
            if (p1 < numInstVals) {
                instIndex = instance.index(p1);
            }
            int itemIndex = p2;

            if (m_items[itemIndex] > -1) {
                if (itemIndex != instIndex) {
                    return false;
                } else {
                    if (instance.isMissingSparse(p1)) {
                        return false;
                    }
                    if (m_items[itemIndex] != (int) instance.valueSparse(p1)) {
                        return false;
                    }
                }

                p1++;
                p2++;
            } else {
                if (itemIndex < instIndex) {
                    p2++;
                } else if (itemIndex == instIndex) {
                    p2++;
                    p1++;
                }
            }
        }
    } else {
        for (int i = 0; i < instance.numAttributes(); i++)
            if (m_items[i] > -1) {
                if (instance.isMissing(i) || (m_treatZeroAsMissing && (int) instance.value(i) == 0))
                    return false;
                if (m_items[i] != (int) instance.value(i))
                    return false;
            }
    }

    return true;
}

From source file:ChiSquare.ChiSquaredAttributeEval.java

License:Open Source License

/**
 * Initializes a chi-squared attribute evaluator.
 * Discretizes all attributes that are numeric.
 *
 * @param data set of instances serving as training data 
 * @throws Exception if the evaluator has not been 
 * generated successfully/* ww  w.j  a  v  a 2 s .  c  o m*/
 */
public void buildEvaluator(Instances data) throws Exception {

    // can evaluator handle data?
    getCapabilities().testWithFail(data);

    int classIndex = data.classIndex();
    int numInstances = data.numInstances();

    if (!m_Binarize) {
        Discretize disTransform = new Discretize();
        disTransform.setUseBetterEncoding(true);
        disTransform.setInputFormat(data);
        data = Filter.useFilter(data, disTransform);
    } else {
        NumericToBinary binTransform = new NumericToBinary();
        binTransform.setInputFormat(data);
        data = Filter.useFilter(data, binTransform);
    }
    int numClasses = data.attribute(classIndex).numValues();

    // Reserve space and initialize counters
    double[][][] counts = new double[data.numAttributes()][][];
    for (int k = 0; k < data.numAttributes(); k++) {
        if (k != classIndex) {
            int numValues = data.attribute(k).numValues();
            counts[k] = new double[numValues + 1][numClasses + 1];
        }
    }

    // Initialize counters
    double[] temp = new double[numClasses + 1];
    for (int k = 0; k < numInstances; k++) {
        Instance inst = data.instance(k);
        if (inst.classIsMissing()) {
            temp[numClasses] += inst.weight();
        } else {
            temp[(int) inst.classValue()] += inst.weight();
        }
    }
    for (int k = 0; k < counts.length; k++) {
        if (k != classIndex) {
            for (int i = 0; i < temp.length; i++) {
                counts[k][0][i] = temp[i];
            }
        }
    }

    // Get counts
    for (int k = 0; k < numInstances; k++) {
        Instance inst = data.instance(k);
        for (int i = 0; i < inst.numValues(); i++) {
            if (inst.index(i) != classIndex) {
                if (inst.isMissingSparse(i) || inst.classIsMissing()) {
                    if (!inst.isMissingSparse(i)) {
                        counts[inst.index(i)][(int) inst.valueSparse(i)][numClasses] += inst.weight();
                        counts[inst.index(i)][0][numClasses] -= inst.weight();
                    } else if (!inst.classIsMissing()) {
                        counts[inst.index(i)][data.attribute(inst.index(i)).numValues()][(int) inst
                                .classValue()] += inst.weight();
                        counts[inst.index(i)][0][(int) inst.classValue()] -= inst.weight();
                    } else {
                        counts[inst.index(i)][data.attribute(inst.index(i)).numValues()][numClasses] += inst
                                .weight();
                        counts[inst.index(i)][0][numClasses] -= inst.weight();
                    }
                } else {
                    counts[inst.index(i)][(int) inst.valueSparse(i)][(int) inst.classValue()] += inst.weight();
                    counts[inst.index(i)][0][(int) inst.classValue()] -= inst.weight();
                }
            }
        }
    }

    // distribute missing counts if required
    if (m_missing_merge) {

        for (int k = 0; k < data.numAttributes(); k++) {
            if (k != classIndex) {
                int numValues = data.attribute(k).numValues();

                // Compute marginals
                double[] rowSums = new double[numValues];
                double[] columnSums = new double[numClasses];
                double sum = 0;
                for (int i = 0; i < numValues; i++) {
                    for (int j = 0; j < numClasses; j++) {
                        rowSums[i] += counts[k][i][j];
                        columnSums[j] += counts[k][i][j];
                    }
                    sum += rowSums[i];
                }

                if (Utils.gr(sum, 0)) {
                    double[][] additions = new double[numValues][numClasses];

                    // Compute what needs to be added to each row
                    for (int i = 0; i < numValues; i++) {
                        for (int j = 0; j < numClasses; j++) {
                            additions[i][j] = (rowSums[i] / sum) * counts[k][numValues][j];
                        }
                    }

                    // Compute what needs to be added to each column
                    for (int i = 0; i < numClasses; i++) {
                        for (int j = 0; j < numValues; j++) {
                            additions[j][i] += (columnSums[i] / sum) * counts[k][j][numClasses];
                        }
                    }

                    // Compute what needs to be added to each cell
                    for (int i = 0; i < numClasses; i++) {
                        for (int j = 0; j < numValues; j++) {
                            additions[j][i] += (counts[k][j][i] / sum) * counts[k][numValues][numClasses];
                        }
                    }

                    // Make new contingency table
                    double[][] newTable = new double[numValues][numClasses];
                    for (int i = 0; i < numValues; i++) {
                        for (int j = 0; j < numClasses; j++) {
                            newTable[i][j] = counts[k][i][j] + additions[i][j];
                        }
                    }
                    counts[k] = newTable;
                }
            }
        }
    }

    // Compute chi-squared values
    m_ChiSquareds = new double[data.numAttributes()];
    for (int i = 0; i < data.numAttributes(); i++) {
        if (i != classIndex) {
            m_ChiSquareds[i] = ContingencyTables.chiVal(ContingencyTables.reduceMatrix(counts[i]), false);
        }
    }
}

From source file:edu.columbia.cs.ltrie.sampling.queries.generation.ChiSquaredWithYatesCorrectionAttributeEval.java

License:Open Source License

/**
 * Initializes a chi-squared attribute evaluator.
 * Discretizes all attributes that are numeric.
 *
 * @param data set of instances serving as training data 
 * @throws Exception if the evaluator has not been 
 * generated successfully/*from w  ww  .ja v  a2 s  .  com*/
 */
public void buildEvaluator(Instances data) throws Exception {

    // can evaluator handle data?
    getCapabilities().testWithFail(data);

    int classIndex = data.classIndex();
    int numInstances = data.numInstances();

    if (!m_Binarize) {
        Discretize disTransform = new Discretize();
        disTransform.setUseBetterEncoding(true);
        disTransform.setInputFormat(data);
        data = Filter.useFilter(data, disTransform);
    } else {
        NumericToBinary binTransform = new NumericToBinary();
        binTransform.setInputFormat(data);
        data = Filter.useFilter(data, binTransform);
    }
    int numClasses = data.attribute(classIndex).numValues();

    // Reserve space and initialize counters
    double[][][] counts = new double[data.numAttributes()][][];
    for (int k = 0; k < data.numAttributes(); k++) {
        if (k != classIndex) {
            int numValues = data.attribute(k).numValues();
            counts[k] = new double[numValues + 1][numClasses + 1];
        }
    }

    // Initialize counters
    double[] temp = new double[numClasses + 1];
    for (int k = 0; k < numInstances; k++) {
        Instance inst = data.instance(k);
        if (inst.classIsMissing()) {
            temp[numClasses] += inst.weight();
        } else {
            temp[(int) inst.classValue()] += inst.weight();
        }
    }
    for (int k = 0; k < counts.length; k++) {
        if (k != classIndex) {
            for (int i = 0; i < temp.length; i++) {
                counts[k][0][i] = temp[i];
            }
        }
    }

    // Get counts
    for (int k = 0; k < numInstances; k++) {
        Instance inst = data.instance(k);
        for (int i = 0; i < inst.numValues(); i++) {
            if (inst.index(i) != classIndex) {
                if (inst.isMissingSparse(i) || inst.classIsMissing()) {
                    if (!inst.isMissingSparse(i)) {
                        counts[inst.index(i)][(int) inst.valueSparse(i)][numClasses] += inst.weight();
                        counts[inst.index(i)][0][numClasses] -= inst.weight();
                    } else if (!inst.classIsMissing()) {
                        counts[inst.index(i)][data.attribute(inst.index(i)).numValues()][(int) inst
                                .classValue()] += inst.weight();
                        counts[inst.index(i)][0][(int) inst.classValue()] -= inst.weight();
                    } else {
                        counts[inst.index(i)][data.attribute(inst.index(i)).numValues()][numClasses] += inst
                                .weight();
                        counts[inst.index(i)][0][numClasses] -= inst.weight();
                    }
                } else {
                    counts[inst.index(i)][(int) inst.valueSparse(i)][(int) inst.classValue()] += inst.weight();
                    counts[inst.index(i)][0][(int) inst.classValue()] -= inst.weight();
                }
            }
        }
    }

    // distribute missing counts if required
    if (m_missing_merge) {

        for (int k = 0; k < data.numAttributes(); k++) {
            if (k != classIndex) {
                int numValues = data.attribute(k).numValues();

                // Compute marginals
                double[] rowSums = new double[numValues];
                double[] columnSums = new double[numClasses];
                double sum = 0;
                for (int i = 0; i < numValues; i++) {
                    for (int j = 0; j < numClasses; j++) {
                        rowSums[i] += counts[k][i][j];
                        columnSums[j] += counts[k][i][j];
                    }
                    sum += rowSums[i];
                }

                if (Utils.gr(sum, 0)) {
                    double[][] additions = new double[numValues][numClasses];

                    // Compute what needs to be added to each row
                    for (int i = 0; i < numValues; i++) {
                        for (int j = 0; j < numClasses; j++) {
                            additions[i][j] = (rowSums[i] / sum) * counts[k][numValues][j];
                        }
                    }

                    // Compute what needs to be added to each column
                    for (int i = 0; i < numClasses; i++) {
                        for (int j = 0; j < numValues; j++) {
                            additions[j][i] += (columnSums[i] / sum) * counts[k][j][numClasses];
                        }
                    }

                    // Compute what needs to be added to each cell
                    for (int i = 0; i < numClasses; i++) {
                        for (int j = 0; j < numValues; j++) {
                            additions[j][i] += (counts[k][j][i] / sum) * counts[k][numValues][numClasses];
                        }
                    }

                    // Make new contingency table
                    double[][] newTable = new double[numValues][numClasses];
                    for (int i = 0; i < numValues; i++) {
                        for (int j = 0; j < numClasses; j++) {
                            newTable[i][j] = counts[k][i][j] + additions[i][j];
                        }
                    }
                    counts[k] = newTable;
                }
            }
        }
    }

    // Compute chi-squared values
    m_ChiSquareds = new double[data.numAttributes()];
    for (int i = 0; i < data.numAttributes(); i++) {
        if (i != classIndex) {
            m_ChiSquareds[i] = chiVal(ContingencyTables.reduceMatrix(counts[i]));
        }
    }
}

From source file:feature.InfoGainEval.java

License:Open Source License

/**
 * Initializes an information gain attribute evaluator. Discretizes all
 * attributes that are numeric./*from w w  w.  jav a  2s.c o m*/
 *
 * @param data
 *            set of instances serving as training data
 * @throws Exception
 *             if the evaluator has not been generated successfully
 */
public double computeInfoGain(Instances data, int att) throws Exception {

    // can evaluator handle data?
    getCapabilities().testWithFail(data);

    int classIndex = data.classIndex();
    int numInstances = data.numInstances();

    if (!m_Binarize) {
        Discretize disTransform = new Discretize();
        disTransform.setUseBetterEncoding(true);
        disTransform.setInputFormat(data);
        data = Filter.useFilter(data, disTransform);
    } else {
        NumericToBinary binTransform = new NumericToBinary();
        binTransform.setInputFormat(data);
        data = Filter.useFilter(data, binTransform);
    }
    int numClasses = data.attribute(classIndex).numValues();

    // Reserve space and initialize counters
    double[][][] counts = new double[data.numAttributes()][][];
    for (int k = 0; k < data.numAttributes(); k++) {
        if (k != classIndex) {
            int numValues = data.attribute(k).numValues();
            counts[k] = new double[numValues + 1][numClasses + 1];
        }
    }

    // Initialize counters
    double[] temp = new double[numClasses + 1];
    for (int k = 0; k < numInstances; k++) {
        Instance inst = data.instance(k);
        if (inst.classIsMissing()) {
            temp[numClasses] += inst.weight();
        } else {
            temp[(int) inst.classValue()] += inst.weight();
        }
    }
    for (int k = 0; k < counts.length; k++) {
        if (k != classIndex) {
            for (int i = 0; i < temp.length; i++) {
                counts[k][0][i] = temp[i];
            }
        }
    }

    // Get counts
    for (int k = 0; k < numInstances; k++) {
        Instance inst = data.instance(k);
        for (int i = 0; i < inst.numValues(); i++) {
            if (inst.index(i) != classIndex) {
                if (inst.isMissingSparse(i) || inst.classIsMissing()) {
                    if (!inst.isMissingSparse(i)) {
                        counts[inst.index(i)][(int) inst.valueSparse(i)][numClasses] += inst.weight();
                        counts[inst.index(i)][0][numClasses] -= inst.weight();
                    } else if (!inst.classIsMissing()) {
                        counts[inst.index(i)][data.attribute(inst.index(i)).numValues()][(int) inst
                                .classValue()] += inst.weight();
                        counts[inst.index(i)][0][(int) inst.classValue()] -= inst.weight();
                    } else {
                        counts[inst.index(i)][data.attribute(inst.index(i)).numValues()][numClasses] += inst
                                .weight();
                        counts[inst.index(i)][0][numClasses] -= inst.weight();
                    }
                } else {
                    counts[inst.index(i)][(int) inst.valueSparse(i)][(int) inst.classValue()] += inst.weight();
                    counts[inst.index(i)][0][(int) inst.classValue()] -= inst.weight();
                }
            }
        }
    }

    // distribute missing counts if required
    if (m_missing_merge) {

        for (int k = 0; k < data.numAttributes(); k++) {
            if (k != classIndex) {
                int numValues = data.attribute(k).numValues();

                // Compute marginals
                double[] rowSums = new double[numValues];
                double[] columnSums = new double[numClasses];
                double sum = 0;
                for (int i = 0; i < numValues; i++) {
                    for (int j = 0; j < numClasses; j++) {
                        rowSums[i] += counts[k][i][j];
                        columnSums[j] += counts[k][i][j];
                    }
                    sum += rowSums[i];
                }

                if (Utils.gr(sum, 0)) {
                    double[][] additions = new double[numValues][numClasses];

                    // Compute what needs to be added to each row
                    for (int i = 0; i < numValues; i++) {
                        for (int j = 0; j < numClasses; j++) {
                            additions[i][j] = (rowSums[i] / sum) * counts[k][numValues][j];
                        }
                    }

                    // Compute what needs to be added to each column
                    for (int i = 0; i < numClasses; i++) {
                        for (int j = 0; j < numValues; j++) {
                            additions[j][i] += (columnSums[i] / sum) * counts[k][j][numClasses];
                        }
                    }

                    // Compute what needs to be added to each cell
                    for (int i = 0; i < numClasses; i++) {
                        for (int j = 0; j < numValues; j++) {
                            additions[j][i] += (counts[k][j][i] / sum) * counts[k][numValues][numClasses];
                        }
                    }

                    // Make new contingency table
                    double[][] newTable = new double[numValues][numClasses];
                    for (int i = 0; i < numValues; i++) {
                        for (int j = 0; j < numClasses; j++) {
                            newTable[i][j] = counts[k][i][j] + additions[i][j];
                        }
                    }
                    counts[k] = newTable;
                }
            }
        }
    }

    // Compute info gains
    m_InfoGains = new double[data.numAttributes()];
    m_InfoGains[att] = (ContingencyTables.entropyOverColumns(counts[att])
            - ContingencyTables.entropyConditionedOnRows(counts[att]));

    return m_InfoGains[att];
}

From source file:feature.InfoGainEval.java

License:Open Source License

public void buildEvaluator(Instances data) throws Exception {

    // can evaluator handle data?
    getCapabilities().testWithFail(data);

    int classIndex = data.classIndex();
    int numInstances = data.numInstances();

    if (!m_Binarize) {
        Discretize disTransform = new Discretize();
        disTransform.setUseBetterEncoding(true);
        disTransform.setInputFormat(data);
        data = Filter.useFilter(data, disTransform);
    } else {/*from w w w . j a va 2s  . c o  m*/
        NumericToBinary binTransform = new NumericToBinary();
        binTransform.setInputFormat(data);
        data = Filter.useFilter(data, binTransform);
    }
    int numClasses = data.attribute(classIndex).numValues();

    // Reserve space and initialize counters
    double[][][] counts = new double[data.numAttributes()][][];
    for (int k = 0; k < data.numAttributes(); k++) {
        if (k != classIndex) {
            int numValues = data.attribute(k).numValues();
            counts[k] = new double[numValues + 1][numClasses + 1];
        }
    }

    // Initialize counters
    double[] temp = new double[numClasses + 1];
    for (int k = 0; k < numInstances; k++) {
        Instance inst = data.instance(k);
        if (inst.classIsMissing()) {
            temp[numClasses] += inst.weight();
        } else {
            temp[(int) inst.classValue()] += inst.weight();
        }
    }
    for (int k = 0; k < counts.length; k++) {
        if (k != classIndex) {
            for (int i = 0; i < temp.length; i++) {
                counts[k][0][i] = temp[i];
            }
        }
    }

    // Get counts
    for (int k = 0; k < numInstances; k++) {
        Instance inst = data.instance(k);
        for (int i = 0; i < inst.numValues(); i++) {
            if (inst.index(i) != classIndex) {
                if (inst.isMissingSparse(i) || inst.classIsMissing()) {
                    if (!inst.isMissingSparse(i)) {
                        counts[inst.index(i)][(int) inst.valueSparse(i)][numClasses] += inst.weight();
                        counts[inst.index(i)][0][numClasses] -= inst.weight();
                    } else if (!inst.classIsMissing()) {
                        counts[inst.index(i)][data.attribute(inst.index(i)).numValues()][(int) inst
                                .classValue()] += inst.weight();
                        counts[inst.index(i)][0][(int) inst.classValue()] -= inst.weight();
                    } else {
                        counts[inst.index(i)][data.attribute(inst.index(i)).numValues()][numClasses] += inst
                                .weight();
                        counts[inst.index(i)][0][numClasses] -= inst.weight();
                    }
                } else {
                    counts[inst.index(i)][(int) inst.valueSparse(i)][(int) inst.classValue()] += inst.weight();
                    counts[inst.index(i)][0][(int) inst.classValue()] -= inst.weight();
                }
            }
        }
    }

    // distribute missing counts if required
    if (m_missing_merge) {

        for (int k = 0; k < data.numAttributes(); k++) {
            if (k != classIndex) {
                int numValues = data.attribute(k).numValues();

                // Compute marginals
                double[] rowSums = new double[numValues];
                double[] columnSums = new double[numClasses];
                double sum = 0;
                for (int i = 0; i < numValues; i++) {
                    for (int j = 0; j < numClasses; j++) {
                        rowSums[i] += counts[k][i][j];
                        columnSums[j] += counts[k][i][j];
                    }
                    sum += rowSums[i];
                }

                if (Utils.gr(sum, 0)) {
                    double[][] additions = new double[numValues][numClasses];

                    // Compute what needs to be added to each row
                    for (int i = 0; i < numValues; i++) {
                        for (int j = 0; j < numClasses; j++) {
                            additions[i][j] = (rowSums[i] / sum) * counts[k][numValues][j];
                        }
                    }

                    // Compute what needs to be added to each column
                    for (int i = 0; i < numClasses; i++) {
                        for (int j = 0; j < numValues; j++) {
                            additions[j][i] += (columnSums[i] / sum) * counts[k][j][numClasses];
                        }
                    }

                    // Compute what needs to be added to each cell
                    for (int i = 0; i < numClasses; i++) {
                        for (int j = 0; j < numValues; j++) {
                            additions[j][i] += (counts[k][j][i] / sum) * counts[k][numValues][numClasses];
                        }
                    }

                    // Make new contingency table
                    double[][] newTable = new double[numValues][numClasses];
                    for (int i = 0; i < numValues; i++) {
                        for (int j = 0; j < numClasses; j++) {
                            newTable[i][j] = counts[k][i][j] + additions[i][j];
                        }
                    }
                    counts[k] = newTable;
                }
            }
        }
    }

    // Compute info gains
    m_InfoGains = new double[data.numAttributes()];
    for (int i = 0; i < data.numAttributes(); i++) {
        if (i != classIndex) {
            m_InfoGains[i] = (ContingencyTables.entropyOverColumns(counts[i])
                    - ContingencyTables.entropyConditionedOnRows(counts[i]));
        }
    }
}

From source file:FeatureSelection.ReliefFAttributeEval.java

License:Open Source License

/**
 * Updates the minimum and maximum values for all the attributes based on a
 * new instance./*w w  w. j  av a  2s .c  o  m*/
 *
 * @param instance
 *            the new instance
 */
private void updateMinMax(Instance instance) {
    // for (int j = 0; j < m_numAttribs; j++) {
    try {
        for (int j = 0; j < instance.numValues(); j++) {
            if ((instance.attributeSparse(j).isNumeric()) && (!instance.isMissingSparse(j))) {
                if (Double.isNaN(m_minArray[instance.index(j)])) {
                    m_minArray[instance.index(j)] = instance.valueSparse(j);
                    m_maxArray[instance.index(j)] = instance.valueSparse(j);
                } else {
                    if (instance.valueSparse(j) < m_minArray[instance.index(j)]) {
                        m_minArray[instance.index(j)] = instance.valueSparse(j);
                    } else {
                        if (instance.valueSparse(j) > m_maxArray[instance.index(j)]) {
                            m_maxArray[instance.index(j)] = instance.valueSparse(j);
                        }
                    }
                }
            }
        }
    } catch (Exception ex) {
        System.err.println(ex);
        ex.printStackTrace();
    }
}

From source file:moa.classifiers.functions.SGD.java

License:Open Source License

protected static double dotProd(Instance inst1, DoubleVector weights, int classIndex) {
    double result = 0;

    int n1 = inst1.numValues();
    int n2 = weights.numValues();

    for (int p1 = 0, p2 = 0; p1 < n1 && p2 < n2;) {
        int ind1 = inst1.index(p1);
        int ind2 = p2;
        if (ind1 == ind2) {
            if (ind1 != classIndex && !inst1.isMissingSparse(p1)) {
                result += inst1.valueSparse(p1) * weights.getValue(p2);
            }//from  w  w  w.  j a va  2  s.co m
            p1++;
            p2++;
        } else if (ind1 > ind2) {
            p2++;
        } else {
            p1++;
        }
    }
    return (result);
}

From source file:moa.classifiers.functions.SGD.java

License:Open Source License

/**
 * Trains the classifier with the given instance.
 *
 * @param instance    the new training instance to include in the model
 *//*from  w w w. j a  va2  s .  c  om*/
@Override
public void trainOnInstanceImpl(Instance instance) {

    if (m_weights == null) {
        m_weights = new DoubleVector();
        m_bias = 0.0;
    }

    if (!instance.classIsMissing()) {

        double wx = dotProd(instance, m_weights, instance.classIndex());

        double y;
        double z;
        if (instance.classAttribute().isNominal()) {
            y = (instance.classValue() == 0) ? -1 : 1;
            z = y * (wx + m_bias);
        } else {
            y = instance.classValue();
            z = y - (wx + m_bias);
            y = 1;
        }

        // Compute multiplier for weight decay
        double multiplier = 1.0;
        if (m_numInstances == 0) {
            multiplier = 1.0 - (m_learningRate * m_lambda) / m_t;
        } else {
            multiplier = 1.0 - (m_learningRate * m_lambda) / m_numInstances;
        }
        for (int i = 0; i < m_weights.numValues(); i++) {
            m_weights.setValue(i, m_weights.getValue(i) * multiplier);
        }

        // Only need to do the following if the loss is non-zero
        if (m_loss != HINGE || (z < 1)) {

            // Compute Factor for updates
            double factor = m_learningRate * y * dloss(z);

            // Update coefficients for attributes
            int n1 = instance.numValues();
            for (int p1 = 0; p1 < n1; p1++) {
                int indS = instance.index(p1);
                if (indS != instance.classIndex() && !instance.isMissingSparse(p1)) {
                    m_weights.addToValue(indS, factor * instance.valueSparse(p1));
                }
            }

            // update the bias
            m_bias += factor;
        }
        m_t++;
    }
}

From source file:moa.classifiers.functions.SGDMultiClass.java

License:Open Source License

public void trainOnInstanceImpl(Instance instance, int classLabel) {
    if (!instance.classIsMissing()) {

        double wx = dotProd(instance, m_weights[classLabel], instance.classIndex());

        double y;
        double z;
        if (instance.classAttribute().isNominal()) {
            y = (instance.classValue() != classLabel) ? -1 : 1;
            z = y * (wx + m_bias[classLabel]);
        } else {//  w  w w.  j a v a 2 s  .com
            y = instance.classValue();
            z = y - (wx + m_bias[classLabel]);
            y = 1;
        }

        // Compute multiplier for weight decay
        double multiplier = 1.0;
        if (m_numInstances == 0) {
            multiplier = 1.0 - (m_learningRate * m_lambda) / m_t;
        } else {
            multiplier = 1.0 - (m_learningRate * m_lambda) / m_numInstances;
        }
        for (int i = 0; i < m_weights[classLabel].numValues(); i++) {
            m_weights[classLabel].setValue(i, m_weights[classLabel].getValue(i) * multiplier);
        }

        // Only need to do the following if the loss is non-zero
        if (m_loss != HINGE || (z < 1)) {

            // Compute Factor for updates
            double factor = m_learningRate * y * dloss(z);

            // Update coefficients for attributes
            int n1 = instance.numValues();
            for (int p1 = 0; p1 < n1; p1++) {
                int indS = instance.index(p1);
                if (indS != instance.classIndex() && !instance.isMissingSparse(p1)) {
                    m_weights[classLabel].addToValue(indS, factor * instance.valueSparse(p1));
                }
            }

            // update the bias
            m_bias[classLabel] += factor;
        }

    }
}

From source file:moa.classifiers.functions.SGDOld.java

License:Open Source License

protected static double dotProd(Instance inst1, double[] weights, int classIndex) {
    double result = 0;

    int n1 = inst1.numValues();
    int n2 = weights.length - 1;

    for (int p1 = 0, p2 = 0; p1 < n1 && p2 < n2;) {
        int ind1 = inst1.index(p1);
        int ind2 = p2;
        if (ind1 == ind2) {
            if (ind1 != classIndex && !inst1.isMissingSparse(p1)) {
                result += inst1.valueSparse(p1) * weights[p2];
            }// ww w. j  a va 2s  .  c om
            p1++;
            p2++;
        } else if (ind1 > ind2) {
            p2++;
        } else {
            p1++;
        }
    }
    return (result);
}