Example usage for weka.clusterers SimpleKMeans SimpleKMeans

List of usage examples for weka.clusterers SimpleKMeans SimpleKMeans

Introduction

In this page you can find the example usage for weka.clusterers SimpleKMeans SimpleKMeans.

Prototype

public SimpleKMeans() 

Source Link

Document

the default constructor.

Usage

From source file:lineage.AAFClusterer.java

License:Open Source License

/**
 * K-Means Clustering/*  w  ww.  j  av a  2s . c  o  m*/
 * @param data - matrix of observations (numObs x numFeatures)
 * @param k - number of clusters
 */
public Cluster[] kmeans(double[][] data, int numObs, int numFeatures, int k) {
    Instances ds = convertMatrixToWeka(data, numObs, numFeatures);

    // uses Euclidean distance by default
    SimpleKMeans clusterer = new SimpleKMeans();
    try {
        clusterer.setPreserveInstancesOrder(true);
        clusterer.setNumClusters(k);
        clusterer.buildClusterer(ds);

        // cluster centers
        Instances centers = clusterer.getClusterCentroids();
        Cluster[] clusters = new Cluster[centers.numInstances()];
        for (int i = 0; i < centers.numInstances(); i++) {
            Instance inst = centers.instance(i);
            double[] mean = new double[inst.numAttributes()];
            for (int j = 0; j < mean.length; j++) {
                mean[j] = inst.value(j);
            }
            clusters[i] = new Cluster(mean, i);
        }

        // cluster members
        int[] assignments = clusterer.getAssignments();
        for (int i = 0; i < assignments.length; i++) {
            clusters[assignments[i]].addMember(i);
        }
        return clusters;
    } catch (Exception e) {
        e.printStackTrace();
        System.exit(-1);
        return null;
    }

}

From source file:lu.lippmann.cdb.lab.beta.util.WekaUtil2.java

License:Open Source License

/**
 * //from   w  w  w.j a v  a  2s . c  om
 * @param newInstances
 * @param K
 * @return
 * @throws Exception
 */
public static double[] doKMeans(final Instances newInstances, final int K) throws Exception {
    final SimpleKMeans clusterer = new SimpleKMeans();
    clusterer.setOptions(
            Utils.splitOptions("-N " + K + " -R first-last -I 500 -S 10 -A weka.core.EuclideanDistance"));

    clusterer.buildClusterer(newInstances);

    final ClusterEvaluation eval = new ClusterEvaluation();
    eval.setClusterer(clusterer);
    eval.evaluateClusterer(newInstances);

    double[] ass = eval.getClusterAssignments();
    return ass;
}

From source file:lu.lippmann.cdb.lab.kmeans.KmeansImproved.java

License:Open Source License

/**
 * //  ww  w  .  j av a 2s  . c  om
 * @return
 * @throws Exception
 */
public double[] getClusteredInstances() throws Exception {

    //Removing potential class index 
    instances.setClassIndex(-1);

    //Clustering using Kmeans
    int k;
    double max = 0, r2 = 0, pseudoF = 0;

    //Testing from 2 to 10 clusters, should be set as entry of this function
    SimpleKMeans bestKMeans = new SimpleKMeans();
    for (k = 2; k <= maxClusters; k++) {
        final SimpleKMeans kMeans = new SimpleKMeans();
        kMeans.setNumClusters(k);
        kMeans.buildClusterer(instances);
        //Choosing the "optimal" number of clusters
        r2 = R2(kMeans);
        pseudoF = pseudoF(r2, k);
        //System.out.println(pseudo_f);
        if (pseudoF > max) {
            max = pseudoF;
            bestKMeans = kMeans;
        }
    }

    //Real clustering using the chosen number
    final ClusterEvaluation eval = new ClusterEvaluation();
    eval.setClusterer(bestKMeans);
    eval.evaluateClusterer(instances);
    double[] clusterAssignments = eval.getClusterAssignments();

    this.usedKmeans = bestKMeans;

    return clusterAssignments;

}

From source file:milk.classifiers.MIRBFNetwork.java

License:Open Source License

public Exemplars transform(Exemplars ex) throws Exception {

    // Throw all the instances together
    Instances data = new Instances(ex.exemplar(0).getInstances());
    for (int i = 0; i < ex.numExemplars(); i++) {
        Exemplar curr = ex.exemplar(i);//from   w  ww.j a v  a2 s. co m
        double weight = 1.0 / (double) curr.getInstances().numInstances();
        for (int j = 0; j < curr.getInstances().numInstances(); j++) {
            Instance inst = (Instance) curr.getInstances().instance(j).copy();
            inst.setWeight(weight);
            data.add(inst);
        }
    }
    double factor = (double) data.numInstances() / (double) data.sumOfWeights();
    for (int i = 0; i < data.numInstances(); i++) {
        data.instance(i).setWeight(data.instance(i).weight() * factor);
    }

    SimpleKMeans kMeans = new SimpleKMeans();
    kMeans.setNumClusters(m_num_clusters);
    MakeDensityBasedClusterer clust = new MakeDensityBasedClusterer();
    clust.setClusterer(kMeans);
    m_clm.setDensityBasedClusterer(clust);
    m_clm.setIgnoredAttributeIndices("" + (ex.exemplar(0).idIndex() + 1));
    m_clm.setInputFormat(data);

    // Use filter and discard result
    Instances tempData = Filter.useFilter(data, m_clm);
    tempData = new Instances(tempData, 0);
    tempData.insertAttributeAt(ex.exemplar(0).getInstances().attribute(0), 0);

    // Go through exemplars and add them to new dataset
    Exemplars newExs = new Exemplars(tempData);
    for (int i = 0; i < ex.numExemplars(); i++) {
        Exemplar curr = ex.exemplar(i);
        Instances temp = Filter.useFilter(curr.getInstances(), m_clm);
        temp.insertAttributeAt(ex.exemplar(0).getInstances().attribute(0), 0);
        for (int j = 0; j < temp.numInstances(); j++) {
            temp.instance(j).setValue(0, curr.idValue());
        }
        newExs.add(new Exemplar(temp));
    }
    //System.err.println("Finished transforming");
    //System.err.println(newExs);
    return newExs;
}

From source file:model.clustering.Clustering.java

public String filledFile(Instances data, int numOfClusters, String remove) throws Exception {

    String mainData = data.toString();
    int index = mainData.indexOf("@data");
    String clusterData = mainData.substring(0, index + 6);

    Remove removeFilter = new Remove();
    removeFilter.setAttributeIndices(remove);

    kMeansCLusterer = new SimpleKMeans();
    kMeansCLusterer.setNumClusters(numOfClusters);

    FilteredClusterer filteredClusterer = new FilteredClusterer();
    filteredClusterer.setClusterer(kMeansCLusterer);
    filteredClusterer.setFilter(removeFilter);
    filteredClusterer.buildClusterer(data);

    Enumeration<Instance> newData = data.enumerateInstances();

    eval = new ClusterEvaluation();
    eval.setClusterer(filteredClusterer);
    eval.evaluateClusterer(data);/*from  w ww.  ja va2s . co m*/

    while (newData.hasMoreElements()) {

        Instance i = (Instance) newData.nextElement();
        int kluster = filteredClusterer.clusterInstance(i);
        String instanceString = i.toString() + "," + kluster;
        clusterData = clusterData + instanceString + "\n";

    }
    return clusterData;
}

From source file:myclusterer.WekaCode.java

public static Clusterer buildClusterer(Instances dataSet, int clusterType) throws Exception {
    Clusterer clusterer = null;/*from   w  w w.  j av a2 s . co m*/
    if (clusterType == SimpleKMeans) {
        SimpleKMeans kmeans = new SimpleKMeans();
        Scanner scan = new Scanner(System.in);
        System.out.print("Masukkan jumlah cluster: ");
        int K = scan.nextInt();
        kmeans.setNumClusters(K);
        clusterer = kmeans;
        clusterer.buildClusterer(dataSet);
    } else if (clusterType == HierarchicalClusterer) {
        HierarchicalClusterer hierarchical = new HierarchicalClusterer();
        Scanner scan = new Scanner(System.in);
        System.out.print("Masukkan jumlah cluster: ");
        int K = scan.nextInt();
        hierarchical.setNumClusters(K);
        clusterer = hierarchical;
        clusterer.buildClusterer(dataSet);
    } else if (clusterType == MyKMeans) {
        MyKMeans kmeans = new MyKMeans();
        Scanner scan = new Scanner(System.in);
        System.out.print("Masukkan jumlah cluster: ");
        int K = scan.nextInt();
        kmeans.setNumClusters(K);
        clusterer = kmeans;
        clusterer.buildClusterer(dataSet);
    } else if (clusterType == MyAgnes) {
        MyAgnes agnes = new MyAgnes();
        Scanner scan = new Scanner(System.in);
        System.out.print("Masukkan jumlah cluster: ");
        int K = scan.nextInt();
        agnes.setNumClusters(K);
        clusterer = agnes;
        clusterer.buildClusterer(dataSet);
    }
    return clusterer;
}

From source file:net.sf.markov4jmeter.behaviormodelextractor.extraction.transformation.clustering.KMeansClusteringStrategy.java

License:Apache License

/**
 * {@inheritDoc}//from w  ww.  j a v  a  2 s . c  om
 * 
 * <p>
 * This method is specialized for <b>kmeans</b> clustering.
 */
@Override
public BehaviorMix apply(final BehaviorModelAbsolute[] behaviorModelsAbsolute,
        final UseCaseRepository useCaseRepository) {

    final ABMToRBMTransformer abmToRbmTransformer = new ABMToRBMTransformer();

    // Behavior Mix to be returned;
    final BehaviorMix behaviorMix = this.createBehaviorMix();

    try {

        // Returns a valid instances set, generated based on the absolut
        // behavior models
        Instances instances = getInstances(behaviorModelsAbsolute);

        // KMeans --> Weka
        SimpleKMeans kmeans = new SimpleKMeans();

        // DistanceFunction manhattanDistance = new ManhattanDistance();
        // String[] options = new String[1];
        // options[0] = "-D";
        // manhattanDistance.setOptions(options);
        // manhattanDistance.setInstances(instances);
        // kmeans.setDistanceFunction(manhattanDistance);

        // distance function with option don*t normalize
        DistanceFunction euclideanDistance = new EuclideanDistance();
        // String[] options = new String[1];
        // options[0] = "-D";
        // euclideanDistance.setOptions(options);
        euclideanDistance.setInstances(instances);
        kmeans.setDistanceFunction(euclideanDistance);
        kmeans.setPreserveInstancesOrder(true);

        int[] clustersize = null;
        int[] assignments = null;

        // get number of clusters to be generated.
        int numberOfClusters = Integer.parseInt(CommandLineArgumentsHandler.getNumberOfClustersMin());

        // clustering
        for (int clusterSize = numberOfClusters; clusterSize <= numberOfClusters; clusterSize++) {
            // must be specified in a fix way
            kmeans.setNumClusters(clusterSize);

            // build cluster
            kmeans.buildClusterer(instances);

            clustersize = kmeans.getClusterSizes();
            assignments = kmeans.getAssignments();

            ClusteringMetrics clusteringMetrics = new ClusteringMetrics();
            clusteringMetrics.calculateInterClusteringSimilarity(kmeans.getClusterCentroids());
            clusteringMetrics.calculateIntraClusteringSimilarity(kmeans.getClusterCentroids(), instances,
                    assignments);
            clusteringMetrics.calculateBetas();

            clusteringMetrics.printErrorMetricsHeader();
            clusteringMetrics.printErrorMetrics(kmeans.getClusterCentroids().numInstances());
            clusteringMetrics.printClusteringMetrics(clustersize, assignments, instances);
            // clusteringMetrics.printClusterAssignmentsToSession(assignments,
            // clusterSize);

        }

        Instances resultingCentroids = kmeans.getClusterCentroids();

        // for each centroid instance, create new behaviorModelRelative
        for (int i = 0; i < resultingCentroids.numInstances(); i++) {

            Instance centroid = resultingCentroids.instance(i);

            // create a Behavior Model, which includes all vertices only;
            // the vertices are associated with the use cases, and a
            // dedicated
            // vertex that represents the final state will be added;
            final BehaviorModelAbsolute behaviorModelAbsoluteCentroid = this
                    .createBehaviorModelAbsoluteWithoutTransitions(useCaseRepository.getUseCases());

            // install the transitions in between vertices;
            this.installTransitions(behaviorModelsAbsolute, behaviorModelAbsoluteCentroid, centroid,
                    assignments, i);

            // convert absolute to relative behaviorModel
            final BehaviorModelRelative behaviorModelRelative = abmToRbmTransformer
                    .transform(behaviorModelAbsoluteCentroid);

            // relative Frequency of cluster i
            double relativeFrequency = (double) clustersize[i] / (double) instances.numInstances();

            // create the (unique) Behavior Mix entry to be returned;
            final BehaviorMixEntry behaviorMixEntry = this.createBehaviorMixEntry(
                    AbstractClusteringStrategy.GENERIC_BEHAVIOR_MODEL_NAME, relativeFrequency, // relative frequency;
                    behaviorModelRelative);

            // add to resulting behaviorMix
            behaviorMix.getEntries().add(behaviorMixEntry);

        }

        return behaviorMix;

    } catch (ExtractionException e) {
        e.printStackTrace();
    } catch (Exception e) {
        e.printStackTrace();
    }

    // if any error occurs, an ExtractionExeption should be thrown,
    // indicating the error that occurred;

    // the classes "NoClusteringStrategy" and "SimpleClusteringStrategy"
    // should give an idea for handling the Behavior Models and how to
    // use the helping methods of the (abstract) parent class.

    return behaviorMix;
}

From source file:net.sf.mzmine.modules.peaklistmethods.dataanalysis.clustering.simplekmeans.SimpleKMeansClusterer.java

License:Open Source License

@Override
public ClusteringResult performClustering(Instances dataset, ParameterSet parameters) {

    List<Integer> clusters = new ArrayList<Integer>();
    String[] options = new String[2];
    SimpleKMeans clusterer = new SimpleKMeans();

    int numberOfGroups = parameters.getParameter(SimpleKMeansClustererParameters.numberOfGroups).getValue();
    options[0] = "-N";
    options[1] = String.valueOf(numberOfGroups);

    try {// w w w  .  jav  a2  s . c o m
        clusterer.setOptions(options);
        clusterer.buildClusterer(dataset);
        Enumeration<?> e = dataset.enumerateInstances();
        while (e.hasMoreElements()) {
            clusters.add(clusterer.clusterInstance((Instance) e.nextElement()));
        }
        ClusteringResult result = new ClusteringResult(clusters, null, clusterer.numberOfClusters(),
                parameters.getParameter(EMClustererParameters.visualization).getValue());
        return result;

    } catch (Exception ex) {
        logger.log(Level.SEVERE, null, ex);
        return null;
    }
}

From source file:nl.uva.sne.classifiers.Kmeans.java

@Override
public Map<String, String> cluster(String inDir) throws IOException, ParseException {
    try {/*from   w  w w  .jav  a2 s .  co m*/

        Instances data = ClusterUtils.terms2Instances(inDir, false);

        DistanceFunction df;
        //            SimpleKMeans currently only supports the Euclidean and Manhattan distances.
        switch (distanceFunction) {
        case "Euclidean":
            df = new EuclideanDistance(data);
            break;
        case "Manhattan":
            df = new ManhattanDistance(data);
            break;
        default:
            df = new EuclideanDistance(data);
            break;
        }

        SimpleKMeans clusterer = new SimpleKMeans();

        Random rand = new Random(System.currentTimeMillis());
        int seed = rand.nextInt((Integer.MAX_VALUE - 1000000) + 1) + 1000000;
        clusterer.setSeed(seed);
        clusterer.setMaxIterations(1000000000);
        Logger.getLogger(Kmeans.class.getName()).log(Level.INFO, "Start clusteing");
        clusterer.setPreserveInstancesOrder(true);

        clusterer.setNumClusters(numOfClusters);
        clusterer.setDistanceFunction(df);

        return ClusterUtils.bulidClusters(clusterer, data, inDir);

    } catch (Exception ex) {
        Logger.getLogger(Kmeans.class.getName()).log(Level.SEVERE, null, ex);
    }
    return null;
}

From source file:org.knime.knip.suise.node.boundarymodel.BoundaryModel.java

License:Open Source License

protected void unmodifiedContourData() throws Exception {
    m_contourData = new ContourDataExtractor() {
        protected void extractContourData(int[] translations, int[] permutation) {
            Arrays.fill(translations, 0);

        }//  w ww  .  j av a  2  s .co m
    };
    SimpleKMeans clusterer = new SimpleKMeans();
    int clustersPerSample = 2;
    clusterer.setNumClusters(clustersPerSample * m_contourDataGrid.numSamples());
    m_classifier = new WekaContourDataClassifier(m_wekaClassifier, m_contourData, clusterer);
    m_classifier.buildClassifier(m_contourDataGrid, m_bgData);
    m_contourModels = new double[1][m_contourDataGrid.numClusters() + 1];
    m_contourModels = new double[m_contourData.numSamples()][m_contourData.numClusters()];
    for (int i = 0; i < m_contourData.numVectors(); i++) {
        if (m_contourData.weight(i) > 0)
            m_contourModels[m_contourData.getSampleIndex(i)][m_contourData.getClusterIdx(i)] = 1.0;
    }
    removeRedundantContourModels();
}