List of usage examples for weka.clusterers SimpleKMeans numberOfClusters
@Override public int numberOfClusters() throws Exception
From source file:br.ufrn.ia.core.clustering.EMIaProject.java
License:Open Source License
private void EM_Init(Instances inst) throws Exception { int i, j, k;/*from ww w. j a v a 2 s . c om*/ // run k means 10 times and choose best solution SimpleKMeans bestK = null; double bestSqE = Double.MAX_VALUE; for (i = 0; i < 10; i++) { SimpleKMeans sk = new SimpleKMeans(); sk.setSeed(m_rr.nextInt()); sk.setNumClusters(m_num_clusters); sk.setDisplayStdDevs(true); sk.buildClusterer(inst); if (sk.getSquaredError() < bestSqE) { bestSqE = sk.getSquaredError(); bestK = sk; } } // initialize with best k-means solution m_num_clusters = bestK.numberOfClusters(); m_weights = new double[inst.numInstances()][m_num_clusters]; m_model = new DiscreteEstimator[m_num_clusters][m_num_attribs]; m_modelNormal = new double[m_num_clusters][m_num_attribs][3]; m_priors = new double[m_num_clusters]; Instances centers = bestK.getClusterCentroids(); Instances stdD = bestK.getClusterStandardDevs(); double[][][] nominalCounts = bestK.getClusterNominalCounts(); double[] clusterSizes = bestK.getClusterSizes(); for (i = 0; i < m_num_clusters; i++) { Instance center = centers.instance(i); for (j = 0; j < m_num_attribs; j++) { if (inst.attribute(j).isNominal()) { m_model[i][j] = new DiscreteEstimator(m_theInstances.attribute(j).numValues(), true); for (k = 0; k < inst.attribute(j).numValues(); k++) { m_model[i][j].addValue(k, nominalCounts[i][j][k]); } } else { double minStdD = (m_minStdDevPerAtt != null) ? m_minStdDevPerAtt[j] : m_minStdDev; double mean = (center.isMissing(j)) ? inst.meanOrMode(j) : center.value(j); m_modelNormal[i][j][0] = mean; double stdv = (stdD.instance(i).isMissing(j)) ? ((m_maxValues[j] - m_minValues[j]) / (2 * m_num_clusters)) : stdD.instance(i).value(j); if (stdv < minStdD) { stdv = inst.attributeStats(j).numericStats.stdDev; if (Double.isInfinite(stdv)) { stdv = minStdD; } if (stdv < minStdD) { stdv = minStdD; } } if (stdv <= 0) { stdv = m_minStdDev; } m_modelNormal[i][j][1] = stdv; m_modelNormal[i][j][2] = 1.0; } } } for (j = 0; j < m_num_clusters; j++) { // m_priors[j] += 1.0; m_priors[j] = clusterSizes[j]; } Utils.normalize(m_priors); }
From source file:detplagiasi.KMeansClustering.java
KMeansClustering() { addd = Container.getAddress(); try {// w w w . ja v a 2s . c o m ClusterEvaluation eval; Instances data; String[] options; SimpleKMeans cl; File he = getArffFile(); data = new Instances(new BufferedReader(new FileReader(he))); System.out.println("-----KMeans Clustering-----"); // normal try (BufferedWriter out = new BufferedWriter(new FileWriter(addd + "\\output.txt", true))) { out.write("\r\n--> normal\r\n"); options = new String[2]; options[0] = "-t"; options[1] = he.getAbsolutePath(); out.write("\r\n" + ClusterEvaluation.evaluateClusterer(new SimpleKMeans(), options) + "\r\n"); out.write("\r\n"); // manual call out.write("\n--> manual\r\n"); cl = new SimpleKMeans(); cl.setNumClusters(4); out.write("\r\n"); cl.buildClusterer(data); getDataUji(); System.out.println("jumlah kluster = " + cl.numberOfClusters()); System.out.println("kluster = " + cl.clusterInstance(dataUji.instance(0))); noClusterUji = cl.clusterInstance(dataUji.instance(0)); totalCluster = cl.numberOfClusters(); for (int b = 0; b < dataTraining.numInstances(); b++) { System.out.print("file " + td.fileName[b] + " termasuk cluster ke "); System.out.println(cl.clusterInstance(dataTraining.instance(b))); array1[b] = td.fileName[b]; array2[b] = cl.clusterInstance(dataTraining.instance(b)); //simpan nilai instance ke dalam sebuah array int buat dikirim ke detplaggui } out.write("\r\n"); eval = new ClusterEvaluation(); eval.setClusterer(cl); eval.evaluateClusterer(new Instances(data)); out.write("\r\n\n# of clusters: " + eval.getNumClusters()); } catch (Exception e) { System.err.println(e.getMessage()); System.out.println("error2 kmeans cluster"); } } catch (IOException ex) { Logger.getLogger(Clustering.class.getName()).log(Level.SEVERE, null, ex); System.out.println("errorrrr null kmeans"); } }
From source file:net.sf.mzmine.modules.peaklistmethods.dataanalysis.clustering.simplekmeans.SimpleKMeansClusterer.java
License:Open Source License
@Override public ClusteringResult performClustering(Instances dataset, ParameterSet parameters) { List<Integer> clusters = new ArrayList<Integer>(); String[] options = new String[2]; SimpleKMeans clusterer = new SimpleKMeans(); int numberOfGroups = parameters.getParameter(SimpleKMeansClustererParameters.numberOfGroups).getValue(); options[0] = "-N"; options[1] = String.valueOf(numberOfGroups); try {/*from www . j a v a2 s .c om*/ clusterer.setOptions(options); clusterer.buildClusterer(dataset); Enumeration<?> e = dataset.enumerateInstances(); while (e.hasMoreElements()) { clusters.add(clusterer.clusterInstance((Instance) e.nextElement())); } ClusteringResult result = new ClusteringResult(clusters, null, clusterer.numberOfClusters(), parameters.getParameter(EMClustererParameters.visualization).getValue()); return result; } catch (Exception ex) { logger.log(Level.SEVERE, null, ex); return null; } }