List of usage examples for weka.clusterers RandomizableClusterer subclass-usage
From source file adaptedClusteringAlgorithms.MyFarthestFirst.java
/**
<!-- globalinfo-start -->
* Cluster data using the FarthestFirst algorithm.<br/>
* <br/>
* For more information see:<br/>
* <br/>
From source file adaptedClusteringAlgorithms.MySimpleKMeans.java
/**
* <!-- globalinfo-start --> Cluster data using the k means algorithm
* <p/>
* <!-- globalinfo-end -->
*
* <!-- options-start --> Valid options are:
From source file br.ufrn.ia.core.clustering.SimpleKMeansIaProject.java
public class SimpleKMeansIaProject extends RandomizableClusterer implements NumberOfClustersRequestable, WeightedInstancesHandler { private static final long serialVersionUID = 8850016179481731406L; private ReplaceMissingValues m_ReplaceMissingFilter;
From source file clusterer.SimpleKMeansWithSilhouette.java
/**
* <!-- globalinfo-start --> Cluster data using the k means algorithm. Can use
* either the Euclidean distance (default) or the Manhattan distance. If the
* Manhattan distance is used, then centroids are computed as the component-wise
* median rather than mean. For more information see:<br/>
* <br/>
From source file cn.edu.xmu.dm.d3c.clustering.SimpleKMeans.java
/**
<!-- globalinfo-start -->
* Cluster data using the k means algorithm. Can use either the Euclidean distance (default) or the Manhattan distance. If the Manhattan distance is used, then centroids are computed as the component-wise median rather than mean. For more information see:<br/>
* <br/>
* D. Arthur, S. Vassilvitskii: k-means++: the advantages of carefull seeding. In: Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, 1027-1035, 2007.
* <p/>
From source file de.unimannheim.dws.algorithms.CustomSimpleKMedian.java
/**
* <!-- globalinfo-start --> Cluster data using the k means algorithm
* <p/>
* <!-- globalinfo-end -->
*
* <!-- options-start --> Valid options are:
From source file de.unimannheim.dws.algorithms.CustomSimpleKMedoids.java
/**
* <!-- globalinfo-start --> Cluster data using the k means algorithm
* <p/>
* <!-- globalinfo-end -->
*
* <!-- options-start --> Valid options are:
From source file gr.iti.mklab.visual.quantization.SimpleKMeansWithOutput.java
/**
* <!-- globalinfo-start --> Cluster data using the k means algorithm. Can use either the Euclidean distance
* (default) or the Manhattan distance. If the Manhattan distance is used, then centroids are computed as the
* component-wise median rather than mean. For more information see:<br/>
* <br/>
* D. Arthur, S. Vassilvitskii: k-means++: the advantages of carefull seeding. In: Proceedings of the
From source file meansagnes.MyKMeans.java
/** * * @author Natan */ public class MyKMeans extends RandomizableClusterer {
From source file mulan.classifier.meta.ConstrainedKMeans.java
/**
<!-- globalinfo-start -->
* Cluster data using the k means algorithm
* <p/>
<!-- globalinfo-end -->
*