List of usage examples for weka.clusterers RandomizableClusterer subclass-usage
From source file myclusterer.MyKMeans.java
/** * * @author Visat */ public class MyKMeans extends RandomizableClusterer implements NumberOfClustersRequestable {
From source file org.isep.simizer.example.policy.utils.IterativeSimpleKMeans.java
/**
* <!-- globalinfo-start --> Cluster data using the k means algorithm
* <p/>
* <!-- globalinfo-end -->
*
* <!-- options-start --> Valid options are:
From source file text_clustering.Cobweb.java
/**
<!-- globalinfo-start -->
* Class implementing the Cobweb and Classit clustering algorithms.<br/>
* <br/>
* Note: the application of node operators (merging, splitting etc.) in terms of ordering and priority differs (and is somewhat ambiguous) between the original Cobweb and Classit papers. This algorithm always compares the best host, adding a new leaf, merging the two best hosts, and splitting the best host when considering where to place a new instance.<br/>
* <br/>