List of usage examples for weka.clusterers ClusterEvaluation evaluateClusterer
public void evaluateClusterer(Instances test) throws Exception
From source file:ClusteringClass.java
public static void main(String[] args) throws Exception { String filename = "C:\\Users\\Daniele\\Desktop\\Humoradio2.csv"; try {//from ww w . ja v a 2 s .c om FileWriter fw = new FileWriter(filename); Class.forName("org.apache.derby.jdbc.ClientDriver").newInstance(); Connection conn = DriverManager.getConnection("jdbc:derby://localhost:1527/HumoRadioDB", "dani", "dani"); String query = "SELECT * FROM SONG_RATING2"; Statement stmt = conn.createStatement(); ResultSet rs = stmt.executeQuery(query); for (int i = 1; i < 23; i++) { if (i != 2) { ResultSetMetaData rsmd = rs.getMetaData(); String name = rsmd.getColumnName(i); fw.append(name); if (i != 22) { fw.append(','); } else { fw.append('\n'); } } } String query1 = "SELECT * FROM SONG_DATA"; Statement stmt1 = conn.createStatement(); ResultSet rs1 = stmt1.executeQuery(query1); String[] titles = new String[150]; for (int ii = 0; ii < 150; ii++) { rs1.next(); titles[ii] = rs1.getString("TITLE"); } while (rs.next()) { for (int i = 1; i < 23; i++) { if (i == 22) fw.append('\n'); else if (i != 2) { fw.append(','); } } } fw.flush(); fw.close(); conn.close(); System.out.println("CSV File is created successfully."); /* Clustering part */ DataSource source = new DataSource("C:\\Users\\Daniele\\Desktop\\Humoradio2.csv"); Instances train = source.getDataSet(); /* Applichiamo il filtro Remove fornito da Weka per non considerare un attributo nell'algoritmo di Clustering. */ Remove filter = new Remove(); filter.setAttributeIndices("1"); filter.setInputFormat(train); Instances train2 = Filter.useFilter(train, filter); System.out.println("Nominal attributes removed from computation."); /* Applichiamo il filtro Normalize fornito da Weka per normalizzare il nostro dataset. */ Normalize norm = new Normalize(); norm.setInputFormat(train2); Instances train3 = Filter.useFilter(train2, norm); System.out.println("Dataset normalized."); /* First Clustering Algorithm */ EuclideanDistance df = new EuclideanDistance(); SimpleKMeans clus1 = new SimpleKMeans(); int k = 10; clus1.setNumClusters(k); clus1.setDistanceFunction(df); clus1.setPreserveInstancesOrder(true); clus1.buildClusterer(train3); /* First Evaluation */ ClusterEvaluation eval1 = new ClusterEvaluation(); eval1.setClusterer(clus1); eval1.evaluateClusterer(train3); System.out.println(eval1.clusterResultsToString()); int[] assignments = clus1.getAssignments(); String[][] dati = new String[150][4]; for (int kk = 0; kk < 150; kk++) { dati[kk][0] = String.valueOf(kk); dati[kk][1] = train2.instance(kk).toString(); dati[kk][2] = String.valueOf(assignments[kk]); dati[kk][3] = titles[kk]; } for (int w = 0; w < 10; w++) { System.out.println(); for (int i = 0; i < 150; i++) { if (dati[i][2].equals(String.valueOf(w))) { for (int j = 0; j < 4; j++) { if (j != 3) { System.out.print(dati[i][j] + "-> \t"); } else { System.out.println(dati[i][j]); } } } } } /*first graph PlotData2D predData = ClustererPanel.setUpVisualizableInstances(train, eval1); //String name = (new SimpleDateFormat("HH:mm:ss - ")).format(new Date()); String name = ""; String cname = clus1.getClass().getName(); if (cname.startsWith("weka.clusterers.")) name += cname.substring("weka.clusterers.".length()); else name += cname; VisualizePanel vp = new VisualizePanel(); vp.setName(name + " (" + train.relationName() + ")"); predData.setPlotName(name + " (" + train.relationName() + ")"); vp.addPlot(predData); String plotName = vp.getName(); final javax.swing.JFrame jf = new javax.swing.JFrame("Weka Clusterer Visualize: " + plotName); jf.setSize(500,400); jf.getContentPane().setLayout(new BorderLayout()); jf.getContentPane().add(vp, BorderLayout.CENTER); jf.dispose(); jf.addWindowListener(new java.awt.event.WindowAdapter() { public void windowClosing(java.awt.event.WindowEvent e) { jf.dispose(); } }); jf.setVisible(true); end first graph */ /* Second Clustering Algorithm */ System.out.println(); DBSCAN clus3 = new DBSCAN(); clus3.setEpsilon(0.7); clus3.setMinPoints(2); clus3.buildClusterer(train3); /* Second Evaluation */ ClusterEvaluation eval3 = new ClusterEvaluation(); eval3.setClusterer(clus3); eval3.evaluateClusterer(train3); System.out.println(eval3.clusterResultsToString()); double[] assignments3 = eval3.getClusterAssignments(); String[][] dati3 = new String[150][4]; for (int kk = 0; kk < 150; kk++) { dati3[kk][0] = String.valueOf(kk); dati3[kk][1] = train2.instance(kk).toString(); dati3[kk][2] = String.valueOf(assignments3[kk]); dati3[kk][3] = titles[kk]; } for (int w = 0; w < eval3.getNumClusters(); w++) { System.out.println(); for (int i = 0; i < 150; i++) { if (Double.parseDouble(dati3[i][2]) == w) { for (int j = 0; j < 4; j++) { if (j != 3) { System.out.print(dati3[i][j] + "-> \t"); } else { System.out.println(dati3[i][j]); } } } } } System.out.println(); for (int i = 0; i < 150; i++) { if (Double.parseDouble(dati3[i][2]) == -1.0) { for (int j = 0; j < 4; j++) { if (j != 3) { System.out.print(dati3[i][j] + "-> \t"); } else { System.out.println(dati3[i][j]); } } } } } catch (Exception e) { e.printStackTrace(); } }
From source file:agnes.AgnesMain.java
public static void main(String[] args) throws Exception { // Instances data = loadData("C:\\Program Files\\Weka-3-8\\data\\weather.numeric.arff"); System.out.print("File: "); Scanner scanner = new Scanner(System.in); String filename = scanner.next(); System.out.print("Number of clusters: "); int numCluster = scanner.nextInt(); System.out.print("Single/complete: "); String link = scanner.next(); Instances data = loadData("src/Dataset/weather.arff"); MyAgnes agnes = new MyAgnes(link, numCluster); agnes.buildClusterer(data);//from ww w. ja v a 2 s. com System.out.println("Cluster Hierarchies:\n"); agnes.printClustersID(); ClusterEvaluation eval = new ClusterEvaluation(); eval.setClusterer(agnes); eval.evaluateClusterer(data); System.out.println("Cluster Evaluation:"); System.out.println(eval.clusterResultsToString()); // agnes.printClusters(); }
From source file:aw_cluster.AW_Cluster.java
/** * @param args the command line arguments */// www . j a va 2 s . c o m public static void main(String[] args) throws Exception { // TODO code application logic here Scanner sc = new Scanner(System.in); Instances trainingData; ClusterEvaluation eval; String path; int pilihan; int jumlahCluster; int maxIter; int typeLinkage; do { System.out.println("Masukan pilihan algoritma: "); System.out.println("1. MyKMeans"); System.out.println("2. MyAgnes"); System.out.println("3. Exit"); System.out.print("Pilihan: "); pilihan = sc.nextInt(); if (pilihan == 1) { path = masukanFile(sc); System.out.println("Masukan jumlah cluster: "); jumlahCluster = sc.nextInt(); System.out.println("Masukan jumlah maksimum iterasi: "); maxIter = sc.nextInt(); BufferedReader data = new BufferedReader(new FileReader(path)); trainingData = new Instances(data); myKMeans kmeans = new myKMeans(); kmeans.setNumCluster(jumlahCluster); kmeans.setMaxIteration(maxIter); kmeans.buildClusterer(trainingData); eval = new ClusterEvaluation(); eval.setClusterer(kmeans); eval.evaluateClusterer(trainingData); System.out.println("Cluster Evaluation: " + eval.clusterResultsToString()); System.out.println(""); } else if (pilihan == 2) { path = masukanFile(sc); System.out.println("Masukan jumlah cluster: "); jumlahCluster = sc.nextInt(); typeLinkage = typeLinkage(sc); BufferedReader data = new BufferedReader(new FileReader(path)); trainingData = new Instances(data); myAgnes agnes = new myAgnes(); agnes.setNumCluster(jumlahCluster); agnes.setLinkage(typeLinkage); agnes.buildClusterer(trainingData); eval = new ClusterEvaluation(); eval.setClusterer(agnes); eval.evaluateClusterer(trainingData); System.out.println("Cluster Evaluation: " + eval.clusterResultsToString()); System.out.println(""); } } while (pilihan != 3); }
From source file:clustering.Clustering.java
public void percentageSplit(double percent) { try {/*from w ww . j av a 2s . c o m*/ data.randomize(new java.util.Random(0)); int trainSize = (int) Math.round((double) data.numInstances() * percent / 100f); int testSize = data.numInstances() - trainSize; Instances train = new Instances(data, 0, trainSize); Instances test = new Instances(data, trainSize, testSize); buildClusterer(clusterer, train); ClusterEvaluation eval = new ClusterEvaluation(); eval.setClusterer(model); eval.evaluateClusterer(test); System.out.println(eval.clusterResultsToString()); } catch (Exception ex) { System.out.println(ex); } }
From source file:com.actelion.research.orbit.imageAnalysis.imaging.TMAPoints.java
License:Open Source License
private int guessNumClusters(EM clusterer, Instances instances, int start, int end) throws Exception { ClusterEvaluation eval = new ClusterEvaluation(); int bestNum = start; double best = Double.POSITIVE_INFINITY; double bic;/*from www . j a v a 2s. co m*/ for (int c = start; c <= end; c++) { clusterer.setNumClusters(c); clusterer.buildClusterer(instances); eval.setClusterer(clusterer); eval.evaluateClusterer(instances); bic = bic(eval.getLogLikelihood(), c, instances.numInstances()); logger.trace("numCluster " + c + " -> BIC: " + bic); if (bic < best) { best = bic; bestNum = c; logger.trace("bestNum: " + bestNum); } } return bestNum; }
From source file:com.spread.experiment.tempuntilofficialrelease.ClassificationViaClustering108.java
License:Open Source License
/** * builds the classifier/*from ww w . j a va 2 s . c o m*/ * * @param data the training instances * @throws Exception if something goes wrong */ @Override public void buildClassifier(Instances data) throws Exception { // can classifier handle the data? getCapabilities().testWithFail(data); // save original header (needed for clusters to classes output) m_OriginalHeader = data.stringFreeStructure(); // remove class attribute for clusterer Instances clusterData = new Instances(data); clusterData.setClassIndex(-1); clusterData.deleteAttributeAt(data.classIndex()); m_ClusteringHeader = clusterData.stringFreeStructure(); if (m_ClusteringHeader.numAttributes() == 0) { System.err.println("Data contains only class attribute, defaulting to ZeroR model."); m_ZeroR = new ZeroR(); m_ZeroR.buildClassifier(data); } else { m_ZeroR = null; // build clusterer m_ActualClusterer = AbstractClusterer.makeCopy(m_Clusterer); m_ActualClusterer.buildClusterer(clusterData); if (!getLabelAllClusters()) { // determine classes-to-clusters mapping ClusterEvaluation eval = new ClusterEvaluation(); eval.setClusterer(m_ActualClusterer); eval.evaluateClusterer(clusterData); double[] clusterAssignments = eval.getClusterAssignments(); int[][] counts = new int[eval.getNumClusters()][m_OriginalHeader.numClasses()]; int[] clusterTotals = new int[eval.getNumClusters()]; double[] best = new double[eval.getNumClusters() + 1]; double[] current = new double[eval.getNumClusters() + 1]; for (int i = 0; i < data.numInstances(); i++) { Instance instance = data.instance(i); if (!instance.classIsMissing()) { counts[(int) clusterAssignments[i]][(int) instance.classValue()]++; clusterTotals[(int) clusterAssignments[i]]++; } } best[eval.getNumClusters()] = Double.MAX_VALUE; ClusterEvaluation.mapClasses(eval.getNumClusters(), 0, counts, clusterTotals, current, best, 0); m_ClustersToClasses = new double[best.length]; System.arraycopy(best, 0, m_ClustersToClasses, 0, best.length); } else { m_ClusterClassProbs = new double[m_ActualClusterer.numberOfClusters()][data.numClasses()]; for (int i = 0; i < data.numInstances(); i++) { Instance clusterInstance = clusterData.instance(i); Instance originalInstance = data.instance(i); if (!originalInstance.classIsMissing()) { double[] probs = m_ActualClusterer.distributionForInstance(clusterInstance); for (int j = 0; j < probs.length; j++) { m_ClusterClassProbs[j][(int) originalInstance.classValue()] += probs[j]; } } } for (int i = 0; i < m_ClusterClassProbs.length; i++) { Utils.normalize(m_ClusterClassProbs[i]); } } } }
From source file:jmetal.test.survivalanalysis.GenerateSurvivalGraph.java
License:Open Source License
/** * Evaluates a solution /* w w w . j a v a 2s.c o m*/ * @param solution The solution to evaluate */ public void evaluate(Solution solution) { Binary variable; int counterSelectedFeatures; DataSource source; double testStatistic = Double.MAX_VALUE; double pValue = Double.MAX_VALUE; double ArithmeticHarmonicCutScore = Double.MAX_VALUE; //double statScore; REXP x; variable = ((Binary) solution.getDecisionVariables()[0]); counterSelectedFeatures = 0; try { // read the data file source = new DataSource(this.dataFileName); Instances data = source.getDataSet(); //System.out.print("Data read successfully. "); //System.out.print("Number of attributes: " + data.numAttributes()); //System.out.println(". Number of instances: " + data.numInstances()); // save the attribute 'T' and 'Censor' attTime = data.attribute(data.numAttributes() - 2); attCensor = data.attribute(data.numAttributes() - 1); // First filter the attributes based on chromosome Instances tmpData = this.filterByChromosome(data, solution); // Now filter the attribute 'T' and 'Censor' Remove filter = new Remove(); // remove the two last attributes : 'T' and 'Censor' filter.setAttributeIndices("" + (tmpData.numAttributes() - 1) + "," + tmpData.numAttributes()); //System.out.println("After chromosome filtering no of attributes: " + tmpData.numAttributes()); filter.setInputFormat(tmpData); Instances dataClusterer = Filter.useFilter(tmpData, filter); // filtering complete // List the selected features/attributes Enumeration<Attribute> attributeList = dataClusterer.enumerateAttributes(); System.out.println("Selected attributes/features: "); while (attributeList.hasMoreElements()) { Attribute att = attributeList.nextElement(); System.out.print(att.name() + ","); } System.out.println(); /* // debug: write the filtered dataset ArffSaver saver = new ArffSaver(); saver.setInstances(dataClusterer); saver.setFile(new File("filteered-data.arff")); saver.writeBatch(); // end debug */ // train hierarchical clusterer HierarchicalClusterer clusterer = new HierarchicalClusterer(); clusterer.setOptions(new String[] { "-L", this.HC_LinkType }); //Link type (Single, Complete, Average, Mean, Centroid, Ward, Adjusted complete, Neighbor Joining) //[SINGLE|COMPLETE|AVERAGE|MEAN|CENTROID|WARD|ADJCOMPLETE|NEIGHBOR_JOINING] //clusterer.setDebug(true); clusterer.setNumClusters(2); clusterer.setDistanceFunction(new EuclideanDistance()); clusterer.setDistanceIsBranchLength(false); // ?? Should it be changed to false? (Noman) clusterer.buildClusterer(dataClusterer); double[][] distanceMatrix = clusterer.getDistanceMatrix(); // Cluster evaluation: ClusterEvaluation eval = new ClusterEvaluation(); eval.setClusterer(clusterer); if (this.testDataFileName != null) { DataSource testSource = new DataSource(this.testDataFileName); Instances tmpTestData = testSource.getDataSet(); tmpTestData.setClassIndex(tmpTestData.numAttributes() - 1); //testSource. // First filter the attributes based on chromosome Instances testData = this.filterByChromosome(tmpTestData, solution); //String[] options = new String[2]; //options[0] = "-t"; //options[1] = "/some/where/somefile.arff"; //eval. //System.out.println(eval.evaluateClusterer(testData, options)); eval.evaluateClusterer(testData); System.out.println("\nCluster evluation for this solution(" + this.testDataFileName + "): " + eval.clusterResultsToString()); } // First analyze using my library function // save the cluster assignments int[] clusterAssignment = new int[dataClusterer.numInstances()]; int classOneCnt = 0; int classTwoCnt = 0; for (int i = 0; i < dataClusterer.numInstances(); ++i) { clusterAssignment[i] = clusterer.clusterInstance(dataClusterer.get(i)); if (clusterAssignment[i] == 0) { ++classOneCnt; } else if (clusterAssignment[i] == 1) { ++classTwoCnt; } //System.out.println("Instance " + i + ": " + clusterAssignment[i]); } System.out.println("Class 1 cnt: " + classOneCnt + " Class 2 cnt: " + classTwoCnt); // create arrays with time (event occurrence time) and censor data for use with jstat LogRankTest double[] time1 = new double[classOneCnt]; double[] censor1 = new double[classOneCnt]; double[] time2 = new double[classTwoCnt]; double[] censor2 = new double[classTwoCnt]; //data = source.getDataSet(); for (int i = 0, cnt1 = 0, cnt2 = 0; i < dataClusterer.numInstances(); ++i) { //clusterAssignment[i] = clusterer.clusterInstance(dataClusterer.get(i)); if (clusterAssignment[i] == 0) { time1[cnt1] = data.get(i).value(attTime); censor1[cnt1++] = data.get(i).value(attCensor); //System.out.println("i: " + i + " T: " + time1[cnt1-1]); } else if (clusterAssignment[i] == 1) { time2[cnt2] = data.get(i).value(attTime); //System.out.println("i: " + i + " T: " + time2[cnt2-1]); censor2[cnt2++] = data.get(i).value(attCensor); ; } //System.out.println("Instance " + i + ": " + clusterAssignment[i]); } //Instances[] classInstances = separateClassInstances(clusterAssignment, this.dataFileName,solution); //System.out.println("Class instances seperated"); // calculate log rank test and p values LogRankTest testclass1 = new LogRankTest(time1, time2, censor1, censor2); double[] scores = testclass1.logRank(); testStatistic = scores[0]; pValue = scores[2]; ArithmeticHarmonicCutScore = this.getArithmeticHarmonicCutScore(distanceMatrix, clusterAssignment); //debug: System.out.println("Calculation by myLibrary:\n testStatistic: " + scores[0] + " pValue: " + scores[2] + " Arithmetic Harmonic Cut Score: " + ArithmeticHarmonicCutScore); //end debug //WilcoxonTest testclass1 = new WilcoxonTest(time1, censor1, time2, censor2); //testStatistic = testclass1.testStatistic; //pValue = testclass1.pValue;true // Now analyze calling R for Log Rank test, Parallelization not possible String strT = "time <- c("; String strC = "censor <- c("; String strG = "group <- c("; for (int i = 0; i < dataClusterer.numInstances() - 1; ++i) { strT = strT + (int) data.get(i).value(attTime) + ","; strG = strG + clusterer.clusterInstance(dataClusterer.get(i)) + ","; strC = strC + (int) data.get(i).value(attCensor) + ","; } int tmpi = dataClusterer.numInstances() - 1; strT = strT + (int) data.get(tmpi).value(attTime) + ")"; strG = strG + clusterer.clusterInstance(dataClusterer.get(tmpi)) + ")"; strC = strC + (int) data.get(tmpi).value(attCensor) + ")"; this.re.eval(strT); this.re.eval(strC); this.re.eval(strG); //debug //System.out.println(strT); //System.out.println(strC); //System.out.println(strG); //end debug /** If you are calling surv_test from coin library */ /*v re.eval("library(coin)"); re.eval("grp <- factor (group)"); re.eval("result <- surv_test(Surv(time,censor)~grp,distribution=\"exact\")"); x=re.eval("statistic(result)"); testStatistic = x.asDouble(); //x=re.eval("pvalue(result)"); //pValue = x.asDouble(); //System.out.println("StatScore: " + statScore + "pValue: " + pValue); */ /** If you are calling survdiff from survival library (much faster) */ re.eval("library(survival)"); re.eval("res2 <- survdiff(Surv(time,censor)~group,rho=0)"); x = re.eval("res2$chisq"); testStatistic = x.asDouble(); //System.out.println(x); x = re.eval("pchisq(res2$chisq, df=1, lower.tail = FALSE)"); //x = re.eval("1.0 - pchisq(res2$chisq, df=1)"); pValue = x.asDouble(); //debug: //System.out.println("Calculation by R: StatScore: " + testStatistic + "pValue: " + pValue); //end debug System.out.println("Calculation by R:"); System.out.println("StatScore: " + testStatistic + " pValue: " + pValue); re.eval("timestrata1.surv <- survfit( Surv(time, censor)~ strata(group), conf.type=\"log-log\")"); re.eval("timestrata1.surv1 <- survfit( Surv(time, censor)~ 1, conf.type=\"none\")"); String evalStr = "jpeg('SurvivalPlot-" + this.SolutionID + ".jpg')"; re.eval(evalStr); re.eval("plot(timestrata1.surv, col=c(2,3), xlab=\"Time\", ylab=\"Survival Probability\")"); re.eval("par(new=T)"); re.eval("plot(timestrata1.surv1,col=1)"); re.eval("legend(0.2, c(\"Group1\",\"Group2\",\"Whole\"))"); re.eval("dev.off()"); System.out.println("\nCluster Assignments:"); for (int i = 0; i < dataClusterer.numInstances(); ++i) { System.out.println("Instance " + i + ": " + clusterAssignment[i]); } } catch (Exception e) { // TODO Auto-generated catch block System.err.println("Can't open the data file."); e.printStackTrace(); System.exit(1); } }
From source file:jmetal.test.survivalanalysis.GenerateSurvivalGraphOld.java
License:Open Source License
/** * Evaluates a solution - actually generate the survival graph * @param solution The solution to evaluate *//*from w ww.j av a2 s . c o m*/ public void evaluate(Solution solution) { Binary variable; int counterSelectedFeatures; DataSource source; double testStatistic = Double.MAX_VALUE; double pValue = Double.MAX_VALUE; //double statScore; REXP x; variable = ((Binary) solution.getDecisionVariables()[0]); counterSelectedFeatures = 0; System.out.println("\nSolution ID " + this.SolutionID); try { // read the data file source = new DataSource(this.dataFileName); Instances data = source.getDataSet(); //System.out.print("Data read successfully. "); //System.out.print("Number of attributes: " + data.numAttributes()); //System.out.println(". Number of instances: " + data.numInstances()); // save the attribute 'T' and 'Censor' attTime = data.attribute(data.numAttributes() - 2); attCensor = data.attribute(data.numAttributes() - 1); // First filter the attributes based on chromosome Instances tmpData = this.filterByChromosome(data, solution); // Now filter the attribute 'T' and 'Censor' Remove filter = new Remove(); // remove the two last attributes : 'T' and 'Censor' filter.setAttributeIndices("" + (tmpData.numAttributes() - 1) + "," + tmpData.numAttributes()); //System.out.println("After chromosome filtering no of attributes: " + tmpData.numAttributes()); filter.setInputFormat(tmpData); Instances dataClusterer = Filter.useFilter(tmpData, filter); Enumeration<Attribute> attributeList = dataClusterer.enumerateAttributes(); System.out.println("Selected attributes: "); while (attributeList.hasMoreElements()) { Attribute att = attributeList.nextElement(); System.out.print(att.name() + ","); } System.out.println(); // filtering complete // Debug: write the filtered dataset /* ArffSaver saver = new ArffSaver(); saver.setInstances(dataClusterer); saver.setFile(new File("filteered-data.arff")); saver.writeBatch(); */ // train hierarchical clusterer HierarchicalClusterer clusterer = new HierarchicalClusterer(); clusterer.setOptions(new String[] { "-L", "COMPLETE" }); // complete linkage clustering //clusterer.setDebug(true); clusterer.setNumClusters(2); clusterer.setDistanceFunction(new EuclideanDistance()); //clusterer.setDistanceFunction(new ChebyshevDistance()); clusterer.setDistanceIsBranchLength(false); clusterer.buildClusterer(dataClusterer); // Cluster evaluation: ClusterEvaluation eval = new ClusterEvaluation(); eval.setClusterer(clusterer); if (this.testDataFileName != null) { DataSource testSource = new DataSource(this.testDataFileName); Instances tmpTestData = testSource.getDataSet(); tmpTestData.setClassIndex(tmpTestData.numAttributes() - 1); //testSource. // First filter the attributes based on chromosome Instances testData = this.filterByChromosome(tmpTestData, solution); //String[] options = new String[2]; //options[0] = "-t"; //options[1] = "/some/where/somefile.arff"; //eval. //System.out.println(eval.evaluateClusterer(testData, options)); eval.evaluateClusterer(testData); System.out.println("\nCluster evluation for this solution: " + eval.clusterResultsToString()); } // Print the cluster assignments: // save the cluster assignments //if (printClusterAssignment==true){ int[] clusterAssignment = new int[dataClusterer.numInstances()]; int classOneCnt = 0; int classTwoCnt = 0; for (int i = 0; i < dataClusterer.numInstances(); ++i) { clusterAssignment[i] = clusterer.clusterInstance(dataClusterer.get(i)); if (clusterAssignment[i] == 0) { ++classOneCnt; } else if (clusterAssignment[i] == 1) { ++classTwoCnt; } //System.out.println("Instance " + i + ": " + clusterAssignment[i]); } System.out.println("Class 1 cnt: " + classOneCnt + " Class 2 cnt: " + classTwoCnt); //} /* // create arrays with time (event occurrence time) and censor data for use with jstat LogRankTest double[] time1 = new double[classOneCnt]; double[] censor1 = new double[classOneCnt]; double[] time2 = new double[classTwoCnt]; double[] censor2 = new double[classTwoCnt]; //data = source.getDataSet(); for (int i=0, cnt1=0, cnt2=0; i<dataClusterer.numInstances(); ++i){ clusterAssignment[i] = clusterer.clusterInstance(dataClusterer.get(i)); if (clusterAssignment[i]==0){ time1[cnt1] = data.get(i).value(attTime); censor1[cnt1++] = 1; //System.out.println("i: " + i + " T: " + time1[cnt1-1]); } else if (clusterAssignment[i]==1){ time2[cnt2] = data.get(i).value(attTime); //System.out.println("i: " + i + " T: " + time2[cnt2-1]); censor2[cnt2++] = 1; } //System.out.println("Instance " + i + ": " + clusterAssignment[i]); } //Instances[] classInstances = separateClassInstances(clusterAssignment, this.dataFileName,solution); //System.out.println("Class instances seperated"); // calculate log rank test and p values //LogRankTest testclass1 = new LogRankTest(time1, censor1, time2, censor2); //testStatistic = testclass1.testStatistic; //pValue = testclass1.pValue; WilcoxonTest testclass1 = new WilcoxonTest(time1, censor1, time2, censor2); testStatistic = testclass1.testStatistic; pValue = testclass1.pValue;true */ String strT = "time1 <- c("; String strC = "censor1 <- c("; String strG = "group1 <- c("; for (int i = 0; i < dataClusterer.numInstances() - 1; ++i) { strT = strT + (int) data.get(i).value(attTime) + ","; strG = strG + clusterer.clusterInstance(dataClusterer.get(i)) + ","; strC = strC + (int) data.get(i).value(attCensor) + ","; } int tmpi = dataClusterer.numInstances() - 1; strT = strT + (int) data.get(tmpi).value(attTime) + ")"; strG = strG + clusterer.clusterInstance(dataClusterer.get(tmpi)) + ")"; strC = strC + (int) data.get(tmpi).value(attCensor) + ")"; this.re.eval(strT); this.re.eval(strC); this.re.eval(strG); // for MyLogRankTest double[] time1 = new double[classOneCnt]; double[] time2 = new double[classTwoCnt]; double[] censor1 = new double[classOneCnt]; double[] censor2 = new double[classTwoCnt]; int i1 = 0, i2 = 0; for (int i = 0; i < dataClusterer.numInstances(); ++i) { strT = strT + (int) data.get(i).value(attTime) + ","; strG = strG + clusterer.clusterInstance(dataClusterer.get(i)) + ","; strC = strC + (int) data.get(i).value(attCensor) + ","; if (clusterer.clusterInstance(dataClusterer.get(i)) == 0) { time1[i1] = data.get(i).value(attTime); censor1[i1] = data.get(i).value(attCensor); ++i1; } else { time2[i2] = data.get(i).value(attTime); censor2[i2] = data.get(i).value(attCensor); ++i2; } } /** If you are calling surv_test from coin library */ /*v re.eval("library(coin)"); re.eval("grp <- factor (group)"); re.eval("result <- surv_test(Surv(time,censor)~grp,distribution=\"exact\")"); x=re.eval("statistic(result)"); testStatistic = x.asDouble(); //x=re.eval("pvalue(result)"); //pValue = x.asDouble(); //System.out.println("StatScore: " + statScore + "pValue: " + pValue); */ /** If you are calling survdiff from survival library (much faster) */ re.eval("library(survival)"); re.eval("res21 <- survdiff(Surv(time1,censor1)~group1,rho=0)"); x = re.eval("res21$chisq"); testStatistic = x.asDouble(); //System.out.println(x); x = re.eval("pchisq(res21$chisq, df=1, lower.tail = FALSE)"); //x = re.eval("1.0 - pchisq(res2$chisq, df=1)"); pValue = x.asDouble(); System.out.println("Results from R:"); System.out.println("StatScore: " + testStatistic + " pValue: " + pValue); re.eval("timestrata1.surv <- survfit( Surv(time1, censor1)~ strata(group1), conf.type=\"log-log\")"); re.eval("timestrata1.surv1 <- survfit( Surv(time1, censor1)~ 1, conf.type=\"none\")"); String evalStr = "jpeg('SurvivalPlot-" + this.SolutionID + ".jpg')"; re.eval(evalStr); re.eval("plot(timestrata1.surv, col=c(2,3), xlab=\"Time\", ylab=\"Survival Probability\")"); re.eval("par(new=T)"); re.eval("plot(timestrata1.surv1,col=1)"); re.eval("legend(0.2, c(\"Group1\",\"Group2\",\"Whole\"))"); re.eval("dev.off()"); System.out.println("Results from my code: "); LogRankTest lrt = new LogRankTest(time1, time2, censor1, censor2); double[] results = lrt.logRank(); System.out.println("Statistics: " + results[0] + " variance: " + results[1] + " pValue: " + results[2]); } catch (Exception e) { // TODO Auto-generated catch block System.err.println("Can't open the data file."); e.printStackTrace(); System.exit(1); } /********** * Current Implementation considers two objectives * 1. pvalue to be minimized / statistical score to be maximized * 2. Number of Features to be maximized/minimized */ }
From source file:kmeans_extend.KMeansMain.java
/** * @param args the command line arguments *///from www . j a v a 2s. c om public static void main(String[] args) throws Exception { System.out.print("Put number cluster : "); Scanner scanner = new Scanner(System.in); int numCluster = scanner.nextInt(); Instances data = loadData("src/Dataset/weather.arff"); MyKMeans kmeans = new MyKMeans(numCluster); kmeans.buildClusterer(data); kmeans.printFinalCentroid(); ClusterEvaluation eval = new ClusterEvaluation(); eval.setClusterer(kmeans); eval.evaluateClusterer(data); System.out.println("\n==== Evaluation Result ===="); System.out.println(eval.clusterResultsToString()); }
From source file:lineage.AAFClusterer.java
License:Open Source License
/** * Expectation Maximization clustering/*from www. j a va2s . co m*/ * @param data - matrix of observations (numObs x numFeatures) * @param k - number of clusters */ public Cluster[] em(double[][] data, int numObs, int numFeatures) { Instances ds = convertMatrixToWeka(data, numObs, numFeatures); EM clusterer = new EM(); try { clusterer.buildClusterer(ds); ClusterEvaluation eval = new ClusterEvaluation(); eval.setClusterer(clusterer); eval.evaluateClusterer(new Instances(ds)); int numClusters = eval.getNumClusters(); Cluster[] clusters = new Cluster[numClusters]; double[][] clusterCentroids = new double[numClusters][numFeatures]; int[] clusterCount = new int[numClusters]; double[] assignments = eval.getClusterAssignments(); for (int i = 0; i < ds.numInstances(); i++) { Instance inst = ds.instance(i); int clusterId = (int) assignments[i]; for (int j = 0; j < numFeatures; j++) { clusterCentroids[clusterId][j] += inst.value(j); } clusterCount[clusterId]++; } for (int i = 0; i < numClusters; i++) { double[] mean = new double[numFeatures]; for (int j = 0; j < numFeatures; j++) { mean[j] = clusterCentroids[i][j] / clusterCount[i]; } clusters[i] = new Cluster(mean, i); } // cluster members & std dev double[][] clusterStdDev = new double[numClusters][numFeatures]; for (int i = 0; i < ds.numInstances(); i++) { int clusterId = (int) assignments[i]; clusters[clusterId].addMember(i); for (int j = 0; j < numFeatures; j++) { clusterStdDev[clusterId][j] += Math .pow(ds.instance(i).value(j) - clusters[clusterId].getCentroid()[j], 2); } } for (int i = 0; i < numClusters; i++) { double[] dev = new double[numFeatures]; for (int j = 0; j < numFeatures; j++) { dev[j] = Math.sqrt(clusterStdDev[i][j] / clusterCount[i]); } clusters[i].setStdDev(dev); } return clusters; } catch (Exception e) { e.printStackTrace(); System.exit(-1); return null; } }