Example usage for weka.classifiers Evaluation Evaluation

List of usage examples for weka.classifiers Evaluation Evaluation

Introduction

In this page you can find the example usage for weka.classifiers Evaluation Evaluation.

Prototype

public Evaluation(Instances data) throws Exception 

Source Link

Usage

From source file:ann.ANN.java

public void percentageSplit(Classifier model, double percent, Instances data) {
    try {/*from   ww w .ja  va  2  s.c  o m*/
        int trainSize = (int) Math.round(data.numInstances() * percent / 100);
        int testSize = data.numInstances() - trainSize;
        Instances train = new Instances(data, trainSize);
        Instances test = new Instances(data, testSize);
        ;

        for (int i = 0; i < trainSize; i++) {
            train.add(data.instance(i));
        }
        for (int i = trainSize; i < data.numInstances(); i++) {
            test.add(data.instance(i));
        }

        Evaluation eval = new Evaluation(train);
        eval.evaluateModel(model, test);
        System.out.println("================================");
        System.out.println("========Percentage  Split=======");
        System.out.println("================================");
        System.out.println(eval.toSummaryString("\n=== Summary ===\n", false));
        System.out.println(eval.toClassDetailsString("=== Detailed Accuracy By Class ===\n"));
        System.out.println(eval.toMatrixString("=== Confusion Matrix ===\n"));
    } catch (Exception ex) {
        System.out.println("File tidak berhasil di-load");
    }
}

From source file:ANN.MultilayerPerceptron.java

public static void main(String[] args) throws Exception {
    ConverterUtils.DataSource source = new ConverterUtils.DataSource(
            ("D:\\Program Files\\Weka-3-8\\data\\iris.arff"));
    Instances train = source.getDataSet();
    Normalize nm = new Normalize();
    nm.setInputFormat(train);//from  ww w  . j a  va 2 s . c  o m
    train = Filter.useFilter(train, nm);
    train.setClassIndex(train.numAttributes() - 1);
    System.out.println();
    //                System.out.println(i + " "+0.8);
    MultilayerPerceptron slp = new MultilayerPerceptron(train, 0.1, 5000, 14);
    slp.buildClassifier(train);
    Evaluation eval = new Evaluation(train);
    eval.evaluateModel(slp, train);
    System.out.println(eval.toSummaryString());
    System.out.print(eval.toMatrixString());
}

From source file:ANN.MultiplePerceptron.java

public static void main(String[] args) throws Exception {
    ConverterUtils.DataSource source = new ConverterUtils.DataSource(
            ("D:\\Program Files\\Weka-3-8\\data\\iris.arff"));
    Instances train = source.getDataSet();
    Normalize nm = new Normalize();
    nm.setInputFormat(train);/*from   w  w w  . j  a v  a 2  s . c  o m*/
    train = Filter.useFilter(train, nm);
    train.setClassIndex(train.numAttributes() - 1);
    MultiplePerceptron mlp = new MultiplePerceptron(train, 20, 0.3);
    mlp.buildClassifier(train);
    Evaluation eval = new Evaluation(train);
    eval.evaluateModel(mlp, train);
    System.out.println(eval.toSummaryString());
    System.out.print(eval.toMatrixString());
}

From source file:ANN_Single.SinglelayerPerceptron.java

public static void main(String[] args) throws Exception {
    ConverterUtils.DataSource source = new ConverterUtils.DataSource(
            ("D:\\Program Files\\Weka-3-8\\data\\diabetes.arff"));
    Instances train = source.getDataSet();
    Normalize nm = new Normalize();
    nm.setInputFormat(train);/*from w w w  . j  av  a  2s .c o  m*/
    train = Filter.useFilter(train, nm);
    train.setClassIndex(train.numAttributes() - 1);
    System.out.println();
    //                System.out.println(i + " "+0.8);
    SinglelayerPerceptron slp = new SinglelayerPerceptron(train, 0.1, 5000);
    slp.buildClassifier(train);
    Evaluation eval = new Evaluation(train);
    //                eval.crossValidateModel(slp, train, 10, new Random(1));
    eval.evaluateModel(slp, train);
    System.out.println(eval.toSummaryString());
    System.out.print(eval.toMatrixString());
}

From source file:ANN_single2.MultilayerPerceptron.java

public static void main(String[] args) throws Exception {
    ConverterUtils.DataSource source = new ConverterUtils.DataSource(
            ("D:\\Program Files\\Weka-3-8\\data\\Team.arff"));
    Instances train = source.getDataSet();
    Normalize nm = new Normalize();
    nm.setInputFormat(train);// w w w . ja  v  a 2s. c  o  m
    train = Filter.useFilter(train, nm);
    train.setClassIndex(train.numAttributes() - 1);
    MultilayerPerceptron slp = new MultilayerPerceptron(train, 13, 0.1, 0.5);
    //        slp.buildClassifier(train);
    Evaluation eval = new Evaluation(train);
    eval.crossValidateModel(slp, train, 10, new Random(1));
    //        eval.evaluateModel(slp, train);
    System.out.println(eval.toSummaryString());
    System.out.println(eval.toMatrixString());
}

From source file:ANN_single2.SinglelayerPerceptron.java

public static void main(String[] args) throws Exception {
    ConverterUtils.DataSource source = new ConverterUtils.DataSource(
            ("D:\\Program Files\\Weka-3-8\\data\\Team.arff"));
    Instances train = source.getDataSet();
    Normalize nm = new Normalize();
    nm.setInputFormat(train);/*from ww  w  .  j a  v a 2  s .  c o m*/
    train = Filter.useFilter(train, nm);
    train.setClassIndex(train.numAttributes() - 1);
    for (int i = 100; i < 3000; i += 100) {
        for (double j = 0.01; j < 1; j += 0.01) {
            System.out.println(i + " " + j);
            SinglelayerPerceptron slp = new SinglelayerPerceptron(i, j, 0.00);
            slp.buildClassifier(train);
            Evaluation eval = new Evaluation(train);
            //                eval.crossValidateModel(slp, train,10, new Random(1));
            eval.evaluateModel(slp, train);
            System.out.println(eval.toSummaryString());
            System.out.println(eval.toMatrixString());
        }
    }
}

From source file:asap.CrossValidation.java

/**
 *
 * @param dataInput/*from   w w  w. j av a2  s  . c  om*/
 * @param classIndex
 * @param removeIndices
 * @param cls
 * @param seed
 * @param folds
 * @param modelOutputFile
 * @return
 * @throws Exception
 */
public static String performCrossValidation(String dataInput, String classIndex, String removeIndices,
        AbstractClassifier cls, int seed, int folds, String modelOutputFile) throws Exception {

    PerformanceCounters.startTimer("cross-validation ST");

    PerformanceCounters.startTimer("cross-validation init ST");

    // loads data and set class index
    Instances data = DataSource.read(dataInput);
    String clsIndex = classIndex;

    switch (clsIndex) {
    case "first":
        data.setClassIndex(0);
        break;
    case "last":
        data.setClassIndex(data.numAttributes() - 1);
        break;
    default:
        try {
            data.setClassIndex(Integer.parseInt(clsIndex) - 1);
        } catch (NumberFormatException e) {
            data.setClassIndex(data.attribute(clsIndex).index());
        }
        break;
    }

    Remove removeFilter = new Remove();
    removeFilter.setAttributeIndices(removeIndices);
    removeFilter.setInputFormat(data);
    data = Filter.useFilter(data, removeFilter);

    // randomize data
    Random rand = new Random(seed);
    Instances randData = new Instances(data);
    randData.randomize(rand);
    if (randData.classAttribute().isNominal()) {
        randData.stratify(folds);
    }

    // perform cross-validation and add predictions
    Evaluation eval = new Evaluation(randData);
    Instances trainSets[] = new Instances[folds];
    Instances testSets[] = new Instances[folds];
    Classifier foldCls[] = new Classifier[folds];

    for (int n = 0; n < folds; n++) {
        trainSets[n] = randData.trainCV(folds, n);
        testSets[n] = randData.testCV(folds, n);
        foldCls[n] = AbstractClassifier.makeCopy(cls);
    }

    PerformanceCounters.stopTimer("cross-validation init ST");
    PerformanceCounters.startTimer("cross-validation folds+train ST");
    //paralelize!!:--------------------------------------------------------------
    for (int n = 0; n < folds; n++) {
        Instances train = trainSets[n];
        Instances test = testSets[n];

        // the above code is used by the StratifiedRemoveFolds filter, the
        // code below by the Explorer/Experimenter:
        // Instances train = randData.trainCV(folds, n, rand);
        // build and evaluate classifier
        Classifier clsCopy = foldCls[n];
        clsCopy.buildClassifier(train);
        eval.evaluateModel(clsCopy, test);
    }

    cls.buildClassifier(data);
    //until here!-----------------------------------------------------------------

    PerformanceCounters.stopTimer("cross-validation folds+train ST");
    PerformanceCounters.startTimer("cross-validation post ST");
    // output evaluation
    String out = "\n" + "=== Setup ===\n" + "Classifier: " + cls.getClass().getName() + " "
            + Utils.joinOptions(cls.getOptions()) + "\n" + "Dataset: " + data.relationName() + "\n" + "Folds: "
            + folds + "\n" + "Seed: " + seed + "\n" + "\n"
            + eval.toSummaryString("=== " + folds + "-fold Cross-validation ===", false) + "\n";

    if (!modelOutputFile.isEmpty()) {
        SerializationHelper.write(modelOutputFile, cls);
    }

    PerformanceCounters.stopTimer("cross-validation post ST");
    PerformanceCounters.stopTimer("cross-validation ST");

    return out;
}

From source file:asap.CrossValidation.java

/**
 *
 * @param dataInput/*from   www . ja  va  2 s . c  o m*/
 * @param classIndex
 * @param removeIndices
 * @param cls
 * @param seed
 * @param folds
 * @param modelOutputFile
 * @return
 * @throws Exception
 */
public static String performCrossValidationMT(String dataInput, String classIndex, String removeIndices,
        AbstractClassifier cls, int seed, int folds, String modelOutputFile) throws Exception {

    PerformanceCounters.startTimer("cross-validation MT");

    PerformanceCounters.startTimer("cross-validation init MT");

    // loads data and set class index
    Instances data = DataSource.read(dataInput);
    String clsIndex = classIndex;

    switch (clsIndex) {
    case "first":
        data.setClassIndex(0);
        break;
    case "last":
        data.setClassIndex(data.numAttributes() - 1);
        break;
    default:
        try {
            data.setClassIndex(Integer.parseInt(clsIndex) - 1);
        } catch (NumberFormatException e) {
            data.setClassIndex(data.attribute(clsIndex).index());
        }
        break;
    }

    Remove removeFilter = new Remove();
    removeFilter.setAttributeIndices(removeIndices);
    removeFilter.setInputFormat(data);
    data = Filter.useFilter(data, removeFilter);

    // randomize data
    Random rand = new Random(seed);
    Instances randData = new Instances(data);
    randData.randomize(rand);
    if (randData.classAttribute().isNominal()) {
        randData.stratify(folds);
    }

    // perform cross-validation and add predictions
    Evaluation eval = new Evaluation(randData);
    List<Thread> foldThreads = (List<Thread>) Collections.synchronizedList(new LinkedList<Thread>());

    List<FoldSet> foldSets = (List<FoldSet>) Collections.synchronizedList(new LinkedList<FoldSet>());

    for (int n = 0; n < folds; n++) {
        foldSets.add(new FoldSet(randData.trainCV(folds, n), randData.testCV(folds, n),
                AbstractClassifier.makeCopy(cls)));

        if (n < Config.getNumThreads() - 1) {
            Thread foldThread = new Thread(new CrossValidationFoldThread(n, foldSets, eval));
            foldThreads.add(foldThread);
        }
    }

    PerformanceCounters.stopTimer("cross-validation init MT");
    PerformanceCounters.startTimer("cross-validation folds+train MT");
    //paralelize!!:--------------------------------------------------------------
    if (Config.getNumThreads() > 1) {
        for (Thread foldThread : foldThreads) {
            foldThread.start();
        }
    } else {
        //use the current thread to run the cross-validation instead of using the Thread instance created here:
        new CrossValidationFoldThread(0, foldSets, eval).run();
    }

    cls.buildClassifier(data);

    for (Thread foldThread : foldThreads) {
        foldThread.join();
    }

    //until here!-----------------------------------------------------------------
    PerformanceCounters.stopTimer("cross-validation folds+train MT");
    PerformanceCounters.startTimer("cross-validation post MT");
    // evaluation for output:
    String out = "\n" + "=== Setup ===\n" + "Classifier: " + cls.getClass().getName() + " "
            + Utils.joinOptions(cls.getOptions()) + "\n" + "Dataset: " + data.relationName() + "\n" + "Folds: "
            + folds + "\n" + "Seed: " + seed + "\n" + "\n"
            + eval.toSummaryString("=== " + folds + "-fold Cross-validation ===", false) + "\n";

    if (!modelOutputFile.isEmpty()) {
        SerializationHelper.write(modelOutputFile, cls);
    }

    PerformanceCounters.stopTimer("cross-validation post MT");
    PerformanceCounters.stopTimer("cross-validation MT");
    return out;
}

From source file:asap.CrossValidation.java

static String performCrossValidationMT(Instances data, AbstractClassifier cls, int seed, int folds,
        String modelOutputFile) {

    PerformanceCounters.startTimer("cross-validation MT");

    PerformanceCounters.startTimer("cross-validation init MT");

    // randomize data
    Random rand = new Random(seed);
    Instances randData = new Instances(data);
    randData.randomize(rand);//from w  ww.j a  v a 2 s . c o m
    if (randData.classAttribute().isNominal()) {
        randData.stratify(folds);
    }

    // perform cross-validation and add predictions
    Evaluation eval;
    try {
        eval = new Evaluation(randData);
    } catch (Exception ex) {
        Logger.getLogger(CrossValidation.class.getName()).log(Level.SEVERE, null, ex);
        return "Error creating evaluation instance for given data!";
    }
    List<Thread> foldThreads = (List<Thread>) Collections.synchronizedList(new LinkedList<Thread>());

    List<FoldSet> foldSets = (List<FoldSet>) Collections.synchronizedList(new LinkedList<FoldSet>());

    for (int n = 0; n < folds; n++) {
        try {
            foldSets.add(new FoldSet(randData.trainCV(folds, n), randData.testCV(folds, n),
                    AbstractClassifier.makeCopy(cls)));
        } catch (Exception ex) {
            Logger.getLogger(CrossValidation.class.getName()).log(Level.SEVERE, null, ex);
        }

        //TODO: use Config.getNumThreads() for limiting these::
        if (n < Config.getNumThreads() - 1) {
            Thread foldThread = new Thread(new CrossValidationFoldThread(n, foldSets, eval));
            foldThreads.add(foldThread);
        }
    }

    PerformanceCounters.stopTimer("cross-validation init MT");
    PerformanceCounters.startTimer("cross-validation folds+train MT");
    //paralelize!!:--------------------------------------------------------------
    if (Config.getNumThreads() > 1) {
        for (Thread foldThread : foldThreads) {
            foldThread.start();
        }
    } else {
        new CrossValidationFoldThread(0, foldSets, eval).run();
    }

    try {
        cls.buildClassifier(data);
    } catch (Exception ex) {
        Logger.getLogger(CrossValidation.class.getName()).log(Level.SEVERE, null, ex);
    }

    for (Thread foldThread : foldThreads) {
        try {
            foldThread.join();
        } catch (InterruptedException ex) {
            Logger.getLogger(CrossValidation.class.getName()).log(Level.SEVERE, null, ex);
        }
    }

    //until here!-----------------------------------------------------------------
    PerformanceCounters.stopTimer("cross-validation folds+train MT");
    PerformanceCounters.startTimer("cross-validation post MT");
    // evaluation for output:
    String out = "\n" + "=== Setup ===\n" + "Classifier: " + cls.getClass().getName() + " "
            + Utils.joinOptions(cls.getOptions()) + "\n" + "Dataset: " + data.relationName() + "\n" + "Folds: "
            + folds + "\n" + "Seed: " + seed + "\n" + "\n"
            + eval.toSummaryString("=== " + folds + "-fold Cross-validation ===", false) + "\n";

    if (modelOutputFile != null) {
        if (!modelOutputFile.isEmpty()) {
            try {
                SerializationHelper.write(modelOutputFile, cls);
            } catch (Exception ex) {
                Logger.getLogger(CrossValidation.class.getName()).log(Level.SEVERE, null, ex);
            }
        }
    }

    PerformanceCounters.stopTimer("cross-validation post MT");
    PerformanceCounters.stopTimer("cross-validation MT");
    return out;
}

From source file:asap.NLPSystem.java

private String _buildClassifier() {
    Evaluation eval;/*from   w w w  .j a  va2s. c  o m*/
    try {
        eval = new Evaluation(trainingSet);
    } catch (Exception ex) {
        Logger.getLogger(NLPSystem.class.getName()).log(Level.SEVERE, null, ex);
        return "Error creating evaluation instance for given data!";
    }

    try {
        classifier.buildClassifier(trainingSet);
    } catch (Exception ex) {
        Logger.getLogger(NLPSystem.class.getName()).log(Level.SEVERE, null, ex);
    }

    try {
        trainingPredictions = eval.evaluateModel(classifier, trainingSet);
        trainingPearsonsCorrelation = eval.correlationCoefficient();
    } catch (Exception ex) {
        Logger.getLogger(NLPSystem.class.getName()).log(Level.SEVERE, null, ex);
    }

    classifierBuilt = true;
    return "Classifier built (" + trainingPearsonsCorrelation + ").";
}