List of usage examples for weka.classifiers Evaluation Evaluation
public Evaluation(Instances data) throws Exception
From source file:newclassifier.NewClassifier.java
public void givenTestSet(String path) throws Exception { Instances test = DataSource.read(path); test.setClassIndex(test.numAttributes() - 1); cls.buildClassifier(data);/* w ww .j av a 2 s . c o m*/ Evaluation eval = new Evaluation(data); eval.evaluateModel(cls, test); System.out.println(eval.toSummaryString("\nResults\n======\n", false)); System.out.println(eval.toClassDetailsString()); System.out.println(eval.toMatrixString()); }
From source file:news.classifier.WekaLearner.java
public void setTrainingData(String fileLocation) throws Exception { wTrainingSet = ConverterUtils.DataSource.read(fileLocation); wClassIndex = wTrainingSet.numAttributes() - 1; wTrainingSet.setClassIndex(wClassIndex); wEvaluation = new Evaluation(wTrainingSet); }
From source file:news.classifier.WekaLearner.java
public String fullTrainingEvaluation() throws Exception { wClassifier.buildClassifier(wTrainingSet); wEvaluation = new Evaluation(wTrainingSet); wEvaluation.evaluateModel(wClassifier, wTrainingSet); return wClassifier.toString() + wEvaluation.toSummaryString("\nHasil evaluasi dengan full-trainning:\n", false); }
From source file:news.classifier.WekaLearner.java
public List<Prediction> fullTrainingEvaluation(Instances testData) throws Exception { wClassifier.buildClassifier(wTrainingSet); wEvaluation = new Evaluation(wTrainingSet); wEvaluation.evaluateModel(wClassifier, testData); return wEvaluation.predictions(); }
From source file:news.classifier.WekaLearner.java
public String crossValidationEvaluation(int fold) throws Exception { wEvaluation = new Evaluation(wTrainingSet); wEvaluation.crossValidateModel(wClassifier, wTrainingSet, fold, new Random(1)); return wClassifier.toString() + wEvaluation.toSummaryString( "\nHasil evaluasi dengan cross-validation " + Integer.toString(fold) + "-fold:\n", false); }
From source file:newsclassifier.NewsClassifier.java
public void CrossValidation(Classifier cls, int n) throws Exception { data.setClassIndex(0);/* www .ja va 2 s. c o m*/ Evaluation eval = new Evaluation(data); cls.buildClassifier(data); eval.crossValidateModel(cls, data, n, new Random(1)); System.out.println(eval.toSummaryString("Results", false)); //System.out.println(eval.toClassDetailsString()); //System.out.println(eval.toMatrixString()); }
From source file:nl.detoren.ijc.neural.Voorspeller.java
License:Open Source License
/** * Evalueer trainingsdata/*from w w w. j a v a 2 s.c om*/ * * @param data * @return * @throws Exception */ private Evaluation evaluateTrainingData(Instances data) throws Exception { mlp.buildClassifier(data); Evaluation eval = new Evaluation(data); eval.evaluateModel(mlp, data); logger.log(Level.INFO, eval.toSummaryString(true)); return eval; }
From source file:nl.uva.expose.classification.WekaClassification.java
private void classifierTrainer(Instances trainData) throws Exception { trainData.setClassIndex(0);//w w w. java 2s. c o m // classifier.setFilter(filter); classifier.setClassifier(new NaiveBayes()); classifier.buildClassifier(trainData); Evaluation eval = new Evaluation(trainData); eval.crossValidateModel(classifier, trainData, 5, new Random(1)); System.out.println(eval.toSummaryString()); System.out.println(eval.toClassDetailsString()); System.out.println("===== Evaluating on filtered (training) dataset done ====="); System.out.println("\n\nClassifier model:\n\n" + classifier); }
From source file:OAT.trading.classification.Weka.java
License:Open Source License
@Override public Prediction predict(InputSample input) { if (classifier == null) { log(Level.WARNING, "null classifier"); return null; }/*from w w w .jav a 2s . c o m*/ Instances data = getInstances(input); if (data == null) { log(Level.WARNING, "null data"); return null; } if (!isCrossValidating()) { if (isLoggable(Level.FINER)) { log(Level.FINER, data.toString()); } } try { double output = new Evaluation(data).evaluateModelOnce(classifier, data.firstInstance()); return Prediction.valueOf(output < 0.5 ? -1 : 1); } catch (Exception ex) { log(Level.SEVERE, null, ex); } return null; }
From source file:old.CFS.java
/** * uses the meta-classifier/*from w ww .j av a 2s. co m*/ */ protected static void useClassifier(Instances data) throws Exception { System.out.println("\n1. Meta-classfier"); AttributeSelectedClassifier classifier = new AttributeSelectedClassifier(); ChiSquaredAttributeEval eval = new ChiSquaredAttributeEval(); Ranker search = new Ranker(); search.setThreshold(-1.7976931348623157E308); search.setNumToSelect(1000); J48 base = new J48(); classifier.setClassifier(base); classifier.setEvaluator(eval); classifier.setSearch(search); Evaluation evaluation = new Evaluation(data); evaluation.crossValidateModel(classifier, data, 10, new Random(1)); System.out.println(evaluation.toSummaryString()); }