Example usage for weka.classifiers Evaluation Evaluation

List of usage examples for weka.classifiers Evaluation Evaluation

Introduction

In this page you can find the example usage for weka.classifiers Evaluation Evaluation.

Prototype

public Evaluation(Instances data) throws Exception 

Source Link

Usage

From source file:ffnn.TucilWeka.java

public static Evaluation fullTraining(Instances data) {
    //10-fold cross validation
    Evaluation eval = null;//from  w  w w .ja  v a  2 s.  c om
    Instances train = new Instances(data);
    Instances test = new Instances(data);
    try {
        Classifier classify = new J48();
        //Membuat klasifier dari data training
        classify.buildClassifier(train);
        eval = new Evaluation(train);
        eval.evaluateModel(classify, test);
    } catch (Exception ex) {
        Logger.getLogger(TucilWeka.class.getName()).log(Level.SEVERE, null, ex);
    }
    return eval;
}

From source file:function.CrossValidation.java

public static void crossValidation(Instances data, AbstractClassifier cls) throws Exception {
    Evaluation evaluation = new Evaluation(data);
    evaluation.crossValidateModel(cls, data, 10, new Random(1));
    System.out.println(evaluation.toSummaryString());
}

From source file:function.CrossValidation.java

public static double crossValidationrate(Instances data, AbstractClassifier cls) throws Exception {
    Evaluation evaluation = new Evaluation(data);
    evaluation.crossValidateModel(cls, data, 10, new Random(1));
    return evaluation.pctCorrect();
}

From source file:function.PercentageSplit.java

public static void percentageSplit(Instances data, Classifier cls) throws Exception {
    int trainSize = (int) Math.round(data.numInstances() * 0.8);
    int testSize = data.numInstances() - trainSize;
    Instances train = new Instances(data, 0, trainSize);
    Instances test = new Instances(data, trainSize, testSize);

    Evaluation eval = new Evaluation(train);
    eval.evaluateModel(cls, test);/*from  ww w  . java2 s .c o m*/
    System.out.println(eval.toSummaryString());
}

From source file:function.PercentageSplit.java

public static double percentageSplitRate(Instances data, Classifier cls) throws Exception {
    int trainSize = (int) Math.round(data.numInstances() * 0.8);
    int testSize = data.numInstances() - trainSize;
    Instances train = new Instances(data, 0, trainSize);
    Instances test = new Instances(data, trainSize, testSize);

    Evaluation eval = new Evaluation(train);
    eval.evaluateModel(cls, test);//from  w  w  w  .  j  a  v  a2  s.  c om
    return eval.pctCorrect();
}

From source file:general.Util.java

/**
 * show learning statistic result by folds-cross-validation
 * @param data instances/*from  w  w  w.  j a  va2  s.co m*/
 * @param folds num of folds
 */
public static void FoldSchema(Instances data, int folds) {
    try {
        Evaluation eval = new Evaluation(data);
        eval.crossValidateModel(Util.getClassifier(), data, folds, new Random(1));
        System.out.println(eval.toSummaryString("\nResults " + folds + " folds cross-validation\n\n", false));
    } catch (Exception ex) {
        Logger.getLogger(Util.class.getName()).log(Level.SEVERE, null, ex);
    }
}

From source file:general.Util.java

/**
 * show learning statistic result by full-training method
 * @param data training data//from  www .  ja v a  2  s.c o m
 */
public static void FullSchema(Instances data) {
    try {
        Evaluation eval = new Evaluation(data);
        eval.evaluateModel(classifier, data);
        System.out.println(eval.toSummaryString("\nResults Full-Training\n\n", false));
    } catch (Exception ex) {
        Logger.getLogger(Util.class.getName()).log(Level.SEVERE, null, ex);
    }
}

From source file:general.Util.java

/**
 * show learning statistic result by using test sets
 * @param testPath test path file//  ww  w  .  ja v  a  2  s .  c om
 * @param typeTestFile test file
 */
public static void TestSchema(String testPath, String typeTestFile) {
    Instances testsets = null;
    // Load test instances based on file type and path
    if (typeTestFile.equals("arff")) {
        FileReader file = null;
        try {
            file = new FileReader(testPath);
            try (BufferedReader reader = new BufferedReader(file)) {
                testsets = new Instances(reader);
            }
            // setting class attribute
            testsets.setClassIndex(data.numAttributes() - 1);
        } catch (IOException ex) {
            Logger.getLogger(Util.class.getName()).log(Level.SEVERE, null, ex);
        } finally {
            try {
                if (file != null) {
                    file.close();
                }
            } catch (IOException ex) {
                Logger.getLogger(Util.class.getName()).log(Level.SEVERE, null, ex);
            }
        }
    } else if (typeTestFile.equals("csv")) {
        try {
            CSVLoader csv = new CSVLoader();
            csv.setFile(new File(testPath));
            data = csv.getDataSet();

            // setting class attribute
            data.setClassIndex(data.numAttributes() - 1);
        } catch (IOException ex) {
            Logger.getLogger(Util.class.getName()).log(Level.SEVERE, null, ex);
        }
    }

    // Start evaluate model using instances test and print results
    try {
        Evaluation eval = new Evaluation(Util.getData());
        eval.evaluateModel(Util.getClassifier(), testsets);
        System.out.println(eval.toSummaryString("\nResults\n\n", false));
    } catch (Exception e) {
        e.printStackTrace();
    }
}

From source file:general.Util.java

/**
 * show learning statistic result by percentage split
 * @param data training data//from   w  w w  .j  a v a  2s  . c o  m
 * @param trainPercent percentage of the training data
 * @param Classifier model
 */
public static void PercentageSplit(Instances data, double trainPercent, String Classifier) {
    try {
        int trainSize = (int) Math.round(data.numInstances() * trainPercent / 100);
        int testSize = data.numInstances() - trainSize;

        data.randomize(new Random(1));

        Instances train = new Instances(data, 0, trainSize);
        Instances test = new Instances(data, trainSize, testSize);
        train.setClassIndex(train.numAttributes() - 1);
        test.setClassIndex(test.numAttributes() - 1);

        switch (Classifier.toLowerCase()) {
        case "naivebayes":
            classifier = new NaiveBayes();
            break;
        case "j48-prune":
            classifier = new MyJ48(true, 0.25f);
            break;
        case "j48-unprune":
            classifier = new MyJ48(false, 0f);
            break;
        case "id3":
            classifier = new MyID3();
            break;
        default:
            break;
        }
        classifier.buildClassifier(train);

        for (int i = 0; i < test.numInstances(); i++) {
            try {
                double pred = classifier.classifyInstance(test.instance(i));
                System.out.print("ID: " + test.instance(i));
                System.out
                        .print(", actual: " + test.classAttribute().value((int) test.instance(i).classValue()));
                System.out.println(", predicted: " + test.classAttribute().value((int) pred));
            } catch (Exception ex) {
                Logger.getLogger(Util.class.getName()).log(Level.SEVERE, null, ex);
            }
        }

        // Start evaluate model using instances test and print results
        try {
            Evaluation eval = new Evaluation(train);
            eval.evaluateModel(classifier, test);
            System.out.println(eval.toSummaryString("\nResults\n\n", false));
        } catch (Exception e) {
            e.printStackTrace();
        }

    } catch (Exception ex) {
        Logger.getLogger(Util.class.getName()).log(Level.SEVERE, null, ex);
    }

}

From source file:gr.demokritos.iit.cpgislanddetection.CpGIslandDetection.java

License:Apache License

/**
 * @param args the command line arguments
 *//*from www .  ja va 2s.  co m*/
public static void main(String[] args) throws IOException, ParseException, Exception {

    // String sFileNameArgs = args[0];

    // String[] fileNames = null;
    // Read  file
    //IGenomicSequenceFileReader reader = new SequenceListFileReader();

    //        String seq ="GCTCTTGACTTTCAGACTTCCTGAAAACAACGTTCTGGTAAGGACAAGGGTT";
    //
    //        CpGIslandIdentification iClass = new CpGIslandIdentification();
    //        boolean b = iClass.identify(seq);
    //        System.out.println("This sequence is a CpG island: " + b);
    //        SequenceListFileReader s = new SequenceListFileReader();
    //        ArrayList<BaseSequence> alRes = new ArrayList<>();
    //        
    //        alRes = s.getSequencesFromFile("C:\\Users\\Xenia\\Desktop\\files\\posSamples.txt");

    //        for(int i=0; i<alRes.size(); i++)
    //        System.out.println("alRes = " + i + alRes.get(i));
    //        VectorAnalyzer vA = new VectorAnalyzer();
    //        List<Vector<Integer>> listVector = new ArrayList<>();
    //Vector<Vector<Integer>> list = 
    //        listVector = vA.analyze(alRes);
    //        for(int i=0; i<listVector.size();i++)
    //        System.out.println(i + " " +listVector.get(i));
    //IGenomicSequenceFileReader reader = new FASTAFileReader();

    // If no input file has been given
    /*        if (args.length == 0) {
    // Use default
    fileNames[0] = "C:\\Users\\Xenia\\Desktop\\files\\posSamples.txt";
    fileNames[1] = "C:\\Users\\Xenia\\Desktop\\files\\negSamples.txt";
    fileNames[2] = "C:\\Users\\Xenia\\Desktop\\files\\newsamples.txt";
            
            } else // else use the provided one
            {
    fileNames = sFileNameArgs.split(";");
            }
    */

    //-----------------VECTOR ANALYSIS STARTS HERE--------------------------------------

    //read sequences from txt files
    SequenceListFileReader reader = new SequenceListFileReader();
    ArrayList<BaseSequence> lSeqs1 = new ArrayList<>();
    ArrayList<BaseSequence> lSeqs2 = new ArrayList<>();

    lSeqs1 = reader.getSequencesFromFile("C:\\Users\\Xenia\\Desktop\\files\\posSamples.txt");
    lSeqs2 = reader.getSequencesFromFile("C:\\Users\\Xenia\\Desktop\\files\\negSamples.txt");

    //create vectors for every sequence
    List<Vector<Integer>> listVectorForPositiveSamples = new ArrayList<>();
    List<Vector<Integer>> listVectorForNegativeSamples = new ArrayList<>();
    VectorAnalyzer v = new VectorAnalyzer();
    listVectorForPositiveSamples = v.analyze(lSeqs1);
    listVectorForNegativeSamples = v.analyze(lSeqs2);

    //create ARFF files for positive and negative samples
    FileCreatorARFF fc = new FileCreatorARFF();
    Instances positiveInstances = fc.createARFF(listVectorForPositiveSamples, "yes");
    Instances negativeInstances = fc.createARFF(listVectorForNegativeSamples, "no");
    //System.out.println(positiveInstances);

    //build and train classifier
    // setting class attribute
    positiveInstances.setClassIndex(positiveInstances.numAttributes() - 1);
    negativeInstances.setClassIndex(negativeInstances.numAttributes() - 1);
    // train NaiveBayes
    NaiveBayesUpdateable nb = new NaiveBayesUpdateable();
    nb.buildClassifier(positiveInstances);
    nb.buildClassifier(negativeInstances);
    Instance current;
    for (int i = 0; i < positiveInstances.numInstances(); i++) {
        current = positiveInstances.instance(i);
        nb.updateClassifier(current);
    }

    // Test the model
    Evaluation eTest = new Evaluation(positiveInstances);
    Instances isTestingSet = fc.createARFF(listVectorForNegativeSamples, "?");
    isTestingSet.setClassIndex(isTestingSet.numAttributes() - 1);
    eTest.evaluateModel(nb, isTestingSet);

    //------------------VECTOR ANALYSIS ENDS HERE---------------------------------------

    //----------------------------HMM CLASSIFIER STARTS HERE----------------------------------
    // Init classifier
    /*       ISequenceClassifier<List<ObservationDiscrete<HmmSequence.Packet>>> classifier
        = new HmmClassifier();
    */
    // WARNING: Remember to change when you have normal data!!!
    // Obfuscation in negative training file?
    //       final boolean bObfuscateNeg = true;
    //        FASTAObfuscatorReader r = new FASTAObfuscatorReader();
    //for each file do the same work: train
    //        for (int i = 0; i < 3; i++) {
    // Read the sequences

    // If obfuscation is on and we are dealing with the negative
    // training file
    /*            if ((i == 2) && (bObfuscateNeg)) {
        //FASTAObfuscatorReader r = new FASTAObfuscatorReader();
        lSeqs = r.getSequencesFromFile(fileNames[i]);
        fileNames[1] = "Not" + fileNames[1]; // Update to indicate different class
    }
    else
        // else read normally
        lSeqs = reader.getSequencesFromFile(fileNames[i]);
            
    System.out.println("lSeqs size="+lSeqs.size());
    */
    // Create HMM sequences
    /*            ISequenceAnalyst<List<ObservationDiscrete<HmmSequence.Packet>>> analyst
            = new HmmAnalyzer();
    List<List<ObservationDiscrete<HmmSequence.Packet>>> lHmmSeqs = analyst.analyze(lSeqs);
            
    // Train classifier with the observations
    classifier.train(lHmmSeqs, new File(fileNames[i]).getName());
            }
            
            //Classify the test file        
            //First: Read the sequences
            lSeqs = r.getSequencesFromFile(fileNames[2]);
            //System.out.println("file name= "+fileNames[2]);
            //Then: Create HMM sequences
            ISequenceAnalyst<List<ObservationDiscrete<HmmSequence.Packet>>> analyst
        = new HmmAnalyzer();
            List<List<ObservationDiscrete<HmmSequence.Packet>>> lHmmSeqs = analyst.analyze(lSeqs);
    */

    //-------------------------------HMM CLASSIFIER ENDS HERE-----------------------------------------

    /*
            
    //----------------------------HMM EVALUATION STARTS-----------------------------------------------
    //System.out.println("size of lHmmSeqs="+ lHmmSeqs.size());
    String str = null;
    String[] savedResults = new String[lHmmSeqs.size()];
            
    //create a 2x2 array to store successes and failures for each class
    int[][] matrix = new int[2][2];
    int successForCpG = 0, failForCpG = 0, successForNotCpG = 0, failForNotCpG = 0;
            
    // Init identifier
    // CpGIslandIdentification identifier = new CpGIslandIdentification();
    CpGIslandIdentification identifier = new CpGIslandIdentificationByList("CpG_hg18.fa");
            
    for (int i = 0; i < lHmmSeqs.size(); i++) {
    // DEBUG
    System.err.print(".");
    if (i % 10 == 0)
        System.err.println();
    ////////
    str = classifier.classify(lHmmSeqs.get(i));
            //  System.out.println(  "i="+i);    
            
    System.out.println("Determined class:" + str);
    //            savedResults[i] = str;
            
    //kalw sunarthsh pou exetazei an to sequence ikanopoiei ta CpG criterias
    if (identifier.identify(lSeqs.get(i).getSymbolSequence()) && str.equals(fileNames[0])) {
            
        //Success for CpG class
        successForCpG++;
        System.out.println("successForCpG"  + successForCpG);
    } else if (identifier.identify(lSeqs.get(i).getSymbolSequence()) && str.equals(fileNames[1])) {
        //fail for CpG class
        failForCpG++;
        System.out.println("failForCpG" + failForCpG);
    } else if (identifier.identify(lSeqs.get(i).getSymbolSequence()) == false && str.equals(fileNames[1])) {
            
        //System.out.println(i);
        //Success for Not CpG class
        successForNotCpG++;
        System.out.println("successForNotCpG" + successForNotCpG);
    } else if (identifier.identify(lSeqs.get(i).getSymbolSequence()) == false && str.equals(fileNames[0])) {
              
        //fail for Not CpG class
        failForNotCpG++;
        System.out.println("failForNotCpG" + failForNotCpG);
    }
              
    }
            
    //Evaluation: calculation of classification rate and accuracy
    double totalAccuracy = (successForNotCpG + successForCpG)/(successForCpG + failForCpG + failForNotCpG + successForNotCpG);
            
    //missclassification rate for CpG class
    double rate1 = ( failForCpG + successForCpG ) != 0 ?
        failForCpG / ( failForCpG + successForCpG ) :
        0.0;
            
    //missclassification rate for Not CpG class
    double rate2 = ( failForNotCpG + successForNotCpG ) != 0 ? 
        failForNotCpG / ( failForNotCpG + successForNotCpG ) :
        0.0;
            
    System.out.println(totalAccuracy +" "+ rate1 + " "+ rate2);
            
    NGramGraphClassifier nGramGraphClassifier = new NGramGraphClassifier();
    List<List<DocumentNGramGraph>> representation;
    NGramGraphAnalyzer myAnalyst = new NGramGraphAnalyzer();
    representation = myAnalyst.analyze(lSeqs);
    for(int i=0; i<representation.size();i++)
    nGramGraphClassifier.classify(representation.get(i));
            
            
    */
}