List of usage examples for weka.classifiers.bayes NaiveBayes buildClassifier
@Override public void buildClassifier(Instances instances) throws Exception
From source file:lector.Analizador.java
public static void clasificador() { BufferedReader reader1;// w ww. j av a2 s .c o m BufferedReader reader2; try { reader1 = new BufferedReader(new FileReader("/Users/danieltapia/Google Drive/EPN/MAESTRIA/MSW128 BI/" + "proyecto/compartida/DataSetAnalisisSentimientos.arff")); reader2 = new BufferedReader(new FileReader("/Users/danieltapia/Google Drive/EPN/MAESTRIA/MSW128 BI/" + "proyecto/compartida/DataSetAnalisisSentimientos_inc.arff")); Instances train = new Instances(reader1); train.setClassIndex(train.numAttributes() - 1); System.out.println(train.classIndex() + " " + train.numAttributes()); Instances test = new Instances(reader2); test.setClassIndex(train.numAttributes() - 1); System.out.println(test.classIndex() + " " + test.numAttributes()); NaiveBayes model = new NaiveBayes(); model.buildClassifier(train); //classify Instances labeled = new Instances(test); for (int i = 0; i < test.numInstances(); i++) { double clsLabel = model.classifyInstance(test.instance(i)); labeled.instance(i).setClassValue(clsLabel); } // https://youtu.be/JY_x5zKTfyo?list=PLJbE6j2EG1pZnBhOg3_Rb63WLCprtyJag Evaluation eval_train = new Evaluation(test); eval_train.evaluateModel(model, test); reader1.close(); reader2.close(); //System.out.println(eval_train.toSummaryString("\nResults\n======\n", false)); String[] options = new String[4]; options[0] = "-t"; //name of training file options[1] = "/Users/danieltapia/Google Drive/EPN/MAESTRIA/MSW128 BI/proyecto/" + "compartida/DataSetAnalisisSentimientos.arff"; options[2] = "-T"; options[3] = "/Users/danieltapia/Google Drive/EPN/MAESTRIA/MSW128 BI/proyecto/" + "compartida/DataSetAnalisisSentimientos_inc.arff"; System.out.println(Evaluation.evaluateModel(model, options)); try ( // print classification results to file BufferedWriter writer = new BufferedWriter( new FileWriter("/Users/danieltapia/Google Drive/EPN/MAESTRIA/MSW128 BI/" + "proyecto/compartida/DataSetAnalisisSentimientos_labeled.arff"))) { writer.write(labeled.toString()); } } catch (Exception e) { } }
From source file:model.clasification.klasifikacijaIstanca.java
public static void main(String[] args) throws Exception { // load data//from w w w .j a v a 2 s.c o m DataSource loader = new DataSource(fileName); Instances data = loader.getDataSet(); data.setClassIndex(data.numAttributes() - 1); // Create the Naive Bayes Classifier NaiveBayes bayesClsf = new NaiveBayes(); bayesClsf.buildClassifier(data); // output generated model // System.out.println(bayesClsf); // Test the model with the original set Evaluation eval = new Evaluation(data); eval.evaluateModel(bayesClsf, data); // Print the result as in Weka explorer String strSummary = eval.toSummaryString(); // System.out.println("=== Evaluation on training set ==="); // System.out.println("=== Summary ==="); // System.out.println(strSummary); // Get the confusion matrix System.out.println(eval.toMatrixString()); }
From source file:PEBL.TwoStep.java
public static void main(String[] args) throws Exception { ConverterUtils.DataSource source = new ConverterUtils.DataSource( "Z:\\\\shared from vm\\\\fourthset\\\\mixed.csv"); Instances data = source.getDataSet(); // setting class attribute if the data format does not provide this information // For example, the XRFF format saves the class attribute information as well if (data.classIndex() == -1) { data.setClassIndex(data.numAttributes() - 1); }/*from w w w. jav a2 s . c o m*/ NumericToNominal nmf = new NumericToNominal(); nmf.setInputFormat(data); data = Filter.useFilter(data, nmf); // build a c4.5 classifier String[] options = new String[1]; // options[0] = "-C 0.25 -M 2"; // unpruned tree options[0] = "-K"; NaiveBayes c = new NaiveBayes(); // new instance of tree c.setOptions(options); // set the options c.buildClassifier(data); // build classifier // eval Evaluation eval = new Evaluation(data); eval.crossValidateModel(c, data, 10, new Random(1)); System.out.println(eval.toSummaryString()); System.out.println(eval.toMatrixString()); System.out.println(eval.toClassDetailsString()); System.out.println("--- model learned on mixed set ---"); // load unlabeled data ConverterUtils.DataSource s = new ConverterUtils.DataSource( "Z:\\\\shared from vm\\\\fourthset\\\\unlabelled.csv"); Instances unlabeled = s.getDataSet(); // set class attribute unlabeled.setClassIndex(unlabeled.numAttributes() - 1); nmf = new NumericToNominal(); nmf.setInputFormat(unlabeled); unlabeled = Filter.useFilter(unlabeled, nmf); // label instances for (int i = 0; i < unlabeled.numInstances(); i++) { double classZero = c.distributionForInstance(unlabeled.instance(i))[0]; double classOne = c.distributionForInstance(unlabeled.instance(i))[1]; System.out.print( "classifying: " + unlabeled.instance(i) + " : " + classZero + " - " + classOne + " == class: "); if (classZero > classOne) { System.out.print("0"); unlabeled.instance(i).setClassValue("0"); } else { System.out.print("1"); unlabeled.instance(i).setClassValue("1"); } System.out.println(""); } // save labeled data // BufferedWriter writer = new BufferedWriter( // new FileWriter("Z:\\\\shared from vm\\\\thirdset\\\\relabelled.arff")); // writer.write(labeled.toString()); // writer.newLine(); // writer.flush(); // writer.close(); ArffSaver saver = new ArffSaver(); saver.setInstances(unlabeled); saver.setFile(new File("Z:\\shared from vm\\thirdset\\relabelled.arff")); // saver.setDestination(new File("Z:\\shared from vm\\thirdset\\relabelled.arff")); // **not** necessary in 3.5.4 and later saver.writeBatch(); }