Java tutorial
/* * To change this license header, choose License Headers in Project Properties. * To change this template file, choose Tools | Templates * and open the template in the editor. */ package model.clasification; import weka.classifiers.Evaluation; import weka.classifiers.bayes.NaiveBayes; import weka.core.Instances; import weka.core.converters.ConverterUtils.DataSource; /** * * @author Ivan */ public class klasifikacijaIstanca { private static String fileName = "C:/Users/Dusan Dudukovic/Documents/test.arff"; public static void main(String[] args) throws Exception { // load data DataSource loader = new DataSource(fileName); Instances data = loader.getDataSet(); data.setClassIndex(data.numAttributes() - 1); // Create the Naive Bayes Classifier NaiveBayes bayesClsf = new NaiveBayes(); bayesClsf.buildClassifier(data); // output generated model // System.out.println(bayesClsf); // Test the model with the original set Evaluation eval = new Evaluation(data); eval.evaluateModel(bayesClsf, data); // Print the result as in Weka explorer String strSummary = eval.toSummaryString(); // System.out.println("=== Evaluation on training set ==="); // System.out.println("=== Summary ==="); // System.out.println(strSummary); // Get the confusion matrix System.out.println(eval.toMatrixString()); } }