Example usage for org.opencv.core Mat get

List of usage examples for org.opencv.core Mat get

Introduction

In this page you can find the example usage for org.opencv.core Mat get.

Prototype

public double[] get(int row, int col) 

Source Link

Usage

From source file:classes.TextRecognitionPreparer.java

private static Scalar getFillingColor(Scalar userColor, Mat cutout, Mat labels, Mat centers) {

    double minDistance = 1000000;
    Scalar fillingColor = null;//  ww w  .j  av  a  2  s .  com

    centers.convertTo(centers, CvType.CV_8UC1, 255.0);
    centers.reshape(3);

    List<Mat> clusters = new ArrayList<Mat>();
    for (int i = 0; i < centers.rows(); i++) {
        clusters.add(Mat.zeros(cutout.size(), cutout.type()));
    }

    Map<Integer, Integer> counts = new HashMap<Integer, Integer>();
    for (int i = 0; i < centers.rows(); i++) {
        counts.put(i, 0);
    }

    int rows = 0;
    for (int y = 0; y < cutout.rows(); y++) {
        for (int x = 0; x < cutout.cols(); x++) {
            int label = (int) labels.get(rows, 0)[0];
            int r = (int) centers.get(label, 2)[0];
            int g = (int) centers.get(label, 1)[0];
            int b = (int) centers.get(label, 0)[0];
            counts.put(label, counts.get(label) + 1);
            clusters.get(label).put(y, x, b, g, r);
            rows++;
        }
    }

    Set<Integer> keySet = counts.keySet();
    Iterator<Integer> iterator = keySet.iterator();
    while (iterator.hasNext()) {

        int label = (int) iterator.next();
        int r = (int) centers.get(label, 2)[0];
        int g = (int) centers.get(label, 1)[0];
        int b = (int) centers.get(label, 0)[0];

        Scalar currentColor = new Scalar(r, g, b);

        double distance = getColorDistance(currentColor, userColor);

        if (distance < minDistance) {
            minDistance = distance;
            fillingColor = currentColor;
        }

    }

    return fillingColor;
}

From source file:classes.TextRecognitionPreparer.java

static Mat replaceColor(Mat image, Scalar color1, Scalar color2) {

    Mat replaced = image.clone();/*from ww  w  . j ava 2 s .c  o  m*/

    for (int y = 0; y < image.rows(); y++) {
        for (int x = 0; x < image.cols(); x++) {
            double[] values = image.get(y, x);
            double r = values[0];
            double g = values[1];
            double b = values[2];

            if (b == color1.val[0] && g == color1.val[1] && r == color1.val[2]) {
                values[0] = color2.val[2];
                values[1] = color2.val[1];
                values[2] = color2.val[0];

            }
            replaced.put(y, x, values);

        }
    }

    return replaced;

}

From source file:classes.TextRecognitionPreparer.java

private static Mat reduceColor(Mat image, int div) {

    Mat result = new Mat(image.size(), image.type());

    int rows = image.rows(); // number of lines
    int cols = image.cols(); // number of elements per line

    for (int j = 0; j < rows; j++) {

        for (int i = 0; i < cols; i++) {

            double[] data = image.get(j, i);

            for (int k = 0; k < 3; k++) {
                data[k] = ((int) data[k] / div) * div + div / 2;

            }//from   www .j  a va  2 s . co m

            int put = result.put(j, i, data);

        }
    }

    return result;
}

From source file:cmib_4_4.Feature.java

public int[] featureVector(Mat image1) {

    Mat image = new Mat();
    Size sz = new Size(30, 30);
    Imgproc.resize(image1, image, sz);//from  w ww. ja  va  2 s  .c  o m
    int size = (int) (image1.total() * image1.channels());
    int size2 = (image.width() * image.height());
    double[][] spec1 = new double[size2][3];

    FeatureVector A = new FeatureVector();
    int k = 0;
    for (int i = 0; i < image.rows(); i++) {

        for (int j = 0; j < image.cols(); j++) {

            //image.get(i, j, rgb);
            double[] rgb = image.get(i, j);
            double[] a = A.cartToSpec(rgb[0], rgb[1], rgb[2]);
            double x = Math.toRadians(90);
            spec1[k][0] = a[0] / x;
            spec1[k][1] = a[1] / x;
            spec1[k][2] = a[2] / x;
            //System.out.println(rgb[0]);
            //System.out.println(spec1[k][2]);
            k++;
        }
    }

    int[][] b = new int[11][11];
    for (int i = 0; i < 11; i++) {

        for (int j = 0; j < 11; j++) {

            b[i][j] = 0;
        }
    }

    for (int i = 0; i < 900; i++) {

        int x1 = (int) (Math.round(spec1[i][1] * 10));
        int y1 = (int) (Math.round(spec1[i][2] * 10));

        b[x1][y1] = b[x1][y1] + 1;
        //System.out.println(x1+"and"+y1);
    }
    int l = 0;
    int[] c = new int[121];
    for (int i = 0; i < 11; i++) {

        for (int j = 0; j < 11; j++) {

            c[l] = b[i][j];
            l++;
            //System.out.println(c[l-1]);
        }
    }
    return c;

}

From source file:cn.xiongyihui.webcam.JpegFactory.java

License:Open Source License

public void onPreviewFrame(byte[] data, Camera camera) {
    YuvImage yuvImage = new YuvImage(data, ImageFormat.NV21, mWidth, mHeight, null);

    mJpegOutputStream.reset();/*w ww  .  j  a  v a 2 s .  c  om*/

    try {
        //Log.e(TAG, "Beginning to read values!");
        double distanceTemplateFeatures = this.globalClass.getDistanceTemplateFeatures();
        double xTemplateCentroid = this.globalClass.getXtemplateCentroid();
        double yTemplateCentroid = this.globalClass.getYtemplateCentroid();
        int x0template = this.globalClass.getX0display();
        int y0template = this.globalClass.getY0display();
        int x1template = this.globalClass.getX1display();
        int y1template = this.globalClass.getY1display();
        Mat templateDescriptor = this.globalClass.getTemplateDescriptor();
        MatOfKeyPoint templateKeyPoints = this.globalClass.getKeyPoints();
        KeyPoint[] templateKeyPointsArray = templateKeyPoints.toArray();
        int numberOfTemplateFeatures = this.globalClass.getNumberOfTemplateFeatures();
        int numberOfPositiveTemplateFeatures = this.globalClass.getNumberOfPositiveTemplateFeatures();
        KeyPoint[] normalisedTemplateKeyPoints = this.globalClass.getNormalisedTemplateKeyPoints();
        double normalisedXcentroid = this.globalClass.getNormalisedXcentroid();
        double normalisedYcentroid = this.globalClass.getNormalisedYcentroid();
        int templateCapturedBitmapWidth = this.globalClass.getTemplateCapturedBitmapWidth();
        int templateCapturedBitmapHeight = this.globalClass.getTemplateCapturedBitmapHeight();
        //Log.e(TAG, "Ended reading values!");
        globalClass.setJpegFactoryDimensions(mWidth, mHeight);
        double scalingRatio, scalingRatioHeight, scalingRatioWidth;

        scalingRatioHeight = (double) mHeight / (double) templateCapturedBitmapHeight;
        scalingRatioWidth = (double) mWidth / (double) templateCapturedBitmapWidth;
        scalingRatio = (scalingRatioHeight + scalingRatioWidth) / 2; //Just to account for any minor variations.
        //Log.e(TAG, "Scaling ratio:" + String.valueOf(scalingRatio));
        //Log.e("Test", "Captured Bitmap's dimensions: (" + templateCapturedBitmapHeight + "," + templateCapturedBitmapWidth + ")");

        //Scale the actual features of the image
        int flag = this.globalClass.getFlag();
        if (flag == 0) {
            int iterate = 0;
            int iterationMax = numberOfTemplateFeatures;

            for (iterate = 0; iterate < (iterationMax); iterate++) {
                Log.e(TAG, "Point detected " + iterate + ":(" + templateKeyPointsArray[iterate].pt.x + ","
                        + templateKeyPointsArray[iterate].pt.y + ")");

                if (flag == 0) {
                    templateKeyPointsArray[iterate].pt.x = scalingRatio
                            * (templateKeyPointsArray[iterate].pt.x + (double) x0template);
                    templateKeyPointsArray[iterate].pt.y = scalingRatio
                            * (templateKeyPointsArray[iterate].pt.y + (double) y0template);
                }
                Log.e(TAG, "Scaled points:(" + templateKeyPointsArray[iterate].pt.x + ","
                        + templateKeyPointsArray[iterate].pt.y + ")");
            }

            this.globalClass.setFlag(1);
        }

        templateKeyPoints.fromArray(templateKeyPointsArray);
        //Log.e(TAG, "Template-features have been scaled successfully!");

        long timeBegin = (int) System.currentTimeMillis();
        Mat mYuv = new Mat(mHeight + mHeight / 2, mWidth, CvType.CV_8UC1);
        mYuv.put(0, 0, data);
        Mat mRgb = new Mat();
        Imgproc.cvtColor(mYuv, mRgb, Imgproc.COLOR_YUV420sp2RGB);

        Mat result = new Mat();
        Imgproc.cvtColor(mRgb, result, Imgproc.COLOR_RGB2GRAY);
        int detectorType = FeatureDetector.ORB;
        FeatureDetector featureDetector = FeatureDetector.create(detectorType);
        MatOfKeyPoint keypointsImage = new MatOfKeyPoint();
        featureDetector.detect(result, keypointsImage);
        KeyPoint[] imageKeypoints = keypointsImage.toArray();

        Scalar color = new Scalar(0, 0, 0);

        DescriptorExtractor descriptorExtractor = DescriptorExtractor.create(DescriptorExtractor.ORB);

        Mat imageDescriptor = new Mat();
        descriptorExtractor.compute(result, keypointsImage, imageDescriptor);

        //BRUTEFORCE_HAMMING apparently finds even the suspicious feature-points! So, inliers and outliers can turn out to be a problem

        DescriptorMatcher matcher = DescriptorMatcher.create(DescriptorMatcher.BRUTEFORCE_HAMMING);
        MatOfDMatch matches = new MatOfDMatch();
        matcher.match(imageDescriptor, templateDescriptor, matches);

        //Log.e("Prasad", String.valueOf(mWidth) + "," + String.valueOf(mHeight));

        DMatch[] matchesArray = matches.toArray();

        double minimumMatchDistance = globalClass.getHammingDistance();

        int iDescriptorMax = matchesArray.length;
        int iterateDescriptor;

        double xMatchedPoint, yMatchedPoint;
        int flagDraw = Features2d.NOT_DRAW_SINGLE_POINTS;

        Point point;

        double rHigh = this.globalClass.getRhigh();
        double rLow = this.globalClass.getRlow();
        double gHigh = this.globalClass.getGhigh();
        double gLow = this.globalClass.getGlow();
        double bHigh = this.globalClass.getBhigh();
        double bLow = this.globalClass.getBlow();

        double[] colorValue;
        double red, green, blue;
        int[] featureCount;
        double xKernelSize = 9, yKernelSize = 9;
        globalClass.setKernelSize(xKernelSize, yKernelSize);
        double xImageKernelScaling, yImageKernelScaling;

        xImageKernelScaling = xKernelSize / mWidth;
        yImageKernelScaling = yKernelSize / mHeight;
        int[][] kernel = new int[(int) xKernelSize][(int) yKernelSize];
        double[][] kernelCounter = new double[(int) xKernelSize][(int) yKernelSize];
        int numberKernelMax = 10;
        globalClass.setNumberKernelMax(numberKernelMax);
        int[][][] kernelArray = new int[(int) xKernelSize][(int) yKernelSize][numberKernelMax];
        double featureImageResponse;
        double xImageCentroid, yImageCentroid;
        double xSum = 0, ySum = 0;
        double totalImageResponse = 0;

        for (iterateDescriptor = 0; iterateDescriptor < iDescriptorMax; iterateDescriptor++) {
            if (matchesArray[iterateDescriptor].distance < minimumMatchDistance) {
                //MatchedPoint: Awesome match without color feedback
                xMatchedPoint = imageKeypoints[matchesArray[iterateDescriptor].queryIdx].pt.x;
                yMatchedPoint = imageKeypoints[matchesArray[iterateDescriptor].queryIdx].pt.y;

                colorValue = mRgb.get((int) yMatchedPoint, (int) xMatchedPoint);

                red = colorValue[0];
                green = colorValue[1];
                blue = colorValue[2];

                int xKernelFeature, yKernelFeature;
                //Color feedback
                if ((rLow < red) & (red < rHigh) & (gLow < green) & (green < gHigh) & (bLow < blue)
                        & (blue < bHigh)) {
                    try {
                        featureImageResponse = imageKeypoints[matchesArray[iterateDescriptor].queryIdx].response;
                        if (featureImageResponse > 0) {
                            xSum = xSum + featureImageResponse * xMatchedPoint;
                            ySum = ySum + featureImageResponse * yMatchedPoint;
                            totalImageResponse = totalImageResponse + featureImageResponse;
                            point = imageKeypoints[matchesArray[iterateDescriptor].queryIdx].pt;

                            xKernelFeature = (int) (xMatchedPoint * xImageKernelScaling);
                            yKernelFeature = (int) (yMatchedPoint * yImageKernelScaling);
                            kernelCounter[xKernelFeature][yKernelFeature]++;
                            //Core.circle(result, point, 3, color);
                        }
                    } catch (Exception e) {
                    }
                }
                //Log.e(TAG, iterateDescriptor + ": (" + xMatchedPoint + "," + yMatchedPoint + ")");
            }
        }

        int iKernel = 0, jKernel = 0;
        for (iKernel = 0; iKernel < xKernelSize; iKernel++) {
            for (jKernel = 0; jKernel < yKernelSize; jKernel++) {
                if (kernelCounter[iKernel][jKernel] > 0) {
                    kernel[iKernel][jKernel] = 1;
                } else {
                    kernel[iKernel][jKernel] = 0;
                }
            }
        }

        xImageCentroid = xSum / totalImageResponse;
        yImageCentroid = ySum / totalImageResponse;

        if ((Double.isNaN(xImageCentroid)) | (Double.isNaN(yImageCentroid))) {
            //Log.e(TAG, "Centroid is not getting detected! Increasing hamming distance (error-tolerance)!");
            globalClass.setHammingDistance((int) (minimumMatchDistance + 2));
        } else {
            //Log.e(TAG, "Centroid is getting detected! Decreasing and optimising hamming (error-tolerance)!");
            globalClass.setHammingDistance((int) (minimumMatchDistance - 1));
            int jpegCount = globalClass.getJpegFactoryCallCount();
            jpegCount++;
            globalClass.setJpegFactoryCallCount(jpegCount);
            int initialisationFlag = globalClass.getInitialisationFlag();
            int numberOfDistances = 10;
            globalClass.setNumberOfDistances(numberOfDistances);

            if ((jpegCount > globalClass.getNumberKernelMax()) & (jpegCount > numberOfDistances)) {
                globalClass.setInitialisationFlag(1);
            }

            int[][] kernelSum = new int[(int) xKernelSize][(int) yKernelSize],
                    mask = new int[(int) xKernelSize][(int) yKernelSize];
            int iJpeg, jJpeg;
            kernelSum = globalClass.computeKernelSum(kernel);

            Log.e(TAG, Arrays.deepToString(kernelSum));

            for (iJpeg = 0; iJpeg < xKernelSize; iJpeg++) {
                for (jJpeg = 0; jJpeg < yKernelSize; jJpeg++) {
                    if (kernelSum[iJpeg][jJpeg] > (numberKernelMax / 4)) {//Meant for normalised kernel
                        mask[iJpeg][jJpeg]++;
                    }
                }
            }

            Log.e(TAG, Arrays.deepToString(mask));

            int maskedFeatureCount = 1, xMaskFeatureSum = 0, yMaskFeatureSum = 0;

            for (iJpeg = 0; iJpeg < xKernelSize; iJpeg++) {
                for (jJpeg = 0; jJpeg < yKernelSize; jJpeg++) {
                    if (mask[iJpeg][jJpeg] == 1) {
                        xMaskFeatureSum = xMaskFeatureSum + iJpeg;
                        yMaskFeatureSum = yMaskFeatureSum + jJpeg;
                        maskedFeatureCount++;
                    }
                }
            }

            double xMaskMean = xMaskFeatureSum / maskedFeatureCount;
            double yMaskMean = yMaskFeatureSum / maskedFeatureCount;

            double xSquaredSum = 0, ySquaredSum = 0;
            for (iJpeg = 0; iJpeg < xKernelSize; iJpeg++) {
                for (jJpeg = 0; jJpeg < yKernelSize; jJpeg++) {
                    if (mask[iJpeg][jJpeg] == 1) {
                        xSquaredSum = xSquaredSum + (iJpeg - xMaskMean) * (iJpeg - xMaskMean);
                        ySquaredSum = ySquaredSum + (jJpeg - yMaskMean) * (jJpeg - yMaskMean);
                    }
                }
            }

            double xRMSscaled = Math.sqrt(xSquaredSum);
            double yRMSscaled = Math.sqrt(ySquaredSum);
            double RMSimage = ((xRMSscaled / xImageKernelScaling) + (yRMSscaled / yImageKernelScaling)) / 2;
            Log.e(TAG, "RMS radius of the image: " + RMSimage);

            /*//Command the quadcopter and send PWM values to Arduino
            double throttlePWM = 1500, yawPWM = 1500, pitchPWM = 1500;
            double deltaThrottle = 1, deltaYaw = 1, deltaPitch = 1;
                    
            throttlePWM = globalClass.getThrottlePWM();
            pitchPWM = globalClass.getPitchPWM();
            yawPWM = globalClass.getYawPWM();
                    
            deltaThrottle = globalClass.getThrottleDelta();
            deltaPitch = globalClass.getPitchDelta();
            deltaYaw = globalClass.getYawDelta();
                    
            if(yImageCentroid>yTemplateCentroid) {
            throttlePWM = throttlePWM + deltaThrottle;
            }else{
            throttlePWM = throttlePWM - deltaThrottle;
            }
                    
            if(RMSimage>distanceTemplateFeatures) {
            pitchPWM = pitchPWM + deltaPitch;
            }else{
            pitchPWM = pitchPWM - deltaPitch;
            }
                    
            if(xImageCentroid>xTemplateCentroid) {
            yawPWM = yawPWM + deltaYaw;
            }else{
            yawPWM = yawPWM - deltaYaw;
            }
                    
            if(1000>throttlePWM){   throttlePWM = 1000; }
                    
            if(2000<throttlePWM){   throttlePWM = 2000; }
                    
            if(1000>pitchPWM){  pitchPWM = 1000;    }
                    
            if(2000<pitchPWM){  pitchPWM = 2000;    }
                    
            if(1000>yawPWM){    yawPWM = 1000;  }
                    
            if(2000<yawPWM){    yawPWM = 2000;  }
                    
            globalClass.setPitchPWM(pitchPWM);
            globalClass.setYawPWM(yawPWM);
            globalClass.setThrottlePWM(throttlePWM);*/

            //Display bounding circle
            int originalWidthBox = x1template - x0template;
            int originalHeightBox = y1template - y0template;

            double scaledBoundingWidth = (originalWidthBox * RMSimage / distanceTemplateFeatures);
            double scaledBoundingHeight = (originalHeightBox * RMSimage / distanceTemplateFeatures);

            double displayRadius = (scaledBoundingWidth + scaledBoundingHeight) / 2;
            displayRadius = displayRadius * 1.4826;
            displayRadius = displayRadius / numberKernelMax;
            double distanceAverage = 0;
            if (Double.isNaN(displayRadius)) {
                //Log.e(TAG, "displayRadius is NaN!");
            } else {
                distanceAverage = globalClass.imageDistanceAverage(displayRadius);
                //Log.e(TAG, "Average distance: " + distanceAverage);
            }

            if ((Double.isNaN(xImageCentroid)) | Double.isNaN(yImageCentroid)) {
                //Log.e(TAG, "Centroid is NaN!");
            } else {
                globalClass.centroidAverage(xImageCentroid, yImageCentroid);
            }

            if (initialisationFlag == 1) {
                //int displayRadius = 50;

                Point pointDisplay = new Point();
                //pointDisplay.x = xImageCentroid;
                //pointDisplay.y = yImageCentroid;
                pointDisplay.x = globalClass.getXcentroidAverageGlobal();
                pointDisplay.y = globalClass.getYcentroidAverageGlobal();
                globalClass.centroidAverage(xImageCentroid, yImageCentroid);
                int distanceAverageInt = (int) distanceAverage;
                Core.circle(result, pointDisplay, distanceAverageInt, color);
            }

        }

        Log.e(TAG, "Centroid in the streamed image: (" + xImageCentroid + "," + yImageCentroid + ")");
        /*try {
        //Features2d.drawKeypoints(result, keypointsImage, result, color, flagDraw);
        Features2d.drawKeypoints(result, templateKeyPoints, result, color, flagDraw);
        }catch(Exception e){}*/

        //Log.e(TAG, "High (R,G,B): (" + rHigh + "," + gHigh + "," + bHigh + ")");
        //Log.e(TAG, "Low (R,G,B): (" + rLow + "," + gLow + "," + bLow + ")");

        //Log.e(TAG, Arrays.toString(matchesArray));

        try {
            Bitmap bmp = Bitmap.createBitmap(result.cols(), result.rows(), Bitmap.Config.ARGB_8888);
            Utils.matToBitmap(result, bmp);
            //Utils.matToBitmap(mRgb, bmp);
            bmp.compress(Bitmap.CompressFormat.JPEG, mQuality, mJpegOutputStream);
        } catch (Exception e) {
            Log.e(TAG, "JPEG not working!");
        }

        long timeEnd = (int) System.currentTimeMillis();
        Log.e(TAG, "Time consumed is " + String.valueOf(timeEnd - timeBegin) + "milli-seconds!");

        mJpegData = mJpegOutputStream.toByteArray();

        synchronized (mJpegOutputStream) {
            mJpegOutputStream.notifyAll();
        }
    } catch (Exception e) {
        Log.e(TAG, "JPEG-factory is not working!");
    }

}

From source file:cn.xiongyihui.webcam.setup.java

License:Open Source License

@Override
protected void onCreate(Bundle savedInstanceState) {
    super.onCreate(savedInstanceState);
    setContentView(R.layout.activity_setup);

    this.setRequestedOrientation(ActivityInfo.SCREEN_ORIENTATION_LANDSCAPE);

    final Button cameraButton = (Button) findViewById(R.id.cameraButton);
    final Button selectButton = (Button) findViewById(R.id.selectButton);
    final Button templateButton = (Button) findViewById(R.id.templateButton);
    final Button instructionButton = (Button) findViewById(R.id.instructionButton);
    final ImageView imageView = (ImageView) findViewById(R.id.imageView);

    try {/*from   w ww  . j  av a2  s .c om*/
        int NUMBER_OF_CORES = Runtime.getRuntime().availableProcessors();

        Toast.makeText(this, NUMBER_OF_CORES, Toast.LENGTH_SHORT).show();
    } catch (Exception e) {
        Log.e(TAG, "Processor-cores are not getting detected!");
    }

    try {
        final Toast toast = Toast.makeText(this,
                "Please capture image; \n" + "select image; \n"
                        + "Drag-and-drop, swipe on the desired region and confirm template!",
                Toast.LENGTH_LONG);
        final TextView v = (TextView) toast.getView().findViewById(android.R.id.message);
        instructionButton.setOnClickListener(new View.OnClickListener() {

            @Override
            public void onClick(View arg0) {
                if (v != null)
                    v.setGravity(Gravity.CENTER);
                toast.show();
            }
        });
    } catch (Exception e) {
        Log.e(TAG, "Instructions are not getting displayed!");
    }

    try {
        cameraButton.setOnClickListener(new View.OnClickListener() {

            @Override
            public void onClick(View arg0) {
                Intent intent = new Intent("android.media.action.IMAGE_CAPTURE");
                startActivityForResult(intent, requestCode);
            }
        });
    } catch (Exception e) {
        Log.e(TAG, "Camera is not working!");
    }

    try {
        selectButton.setOnClickListener(new View.OnClickListener() {

            @Override
            public void onClick(View arg0) {
                Intent i = new Intent(Intent.ACTION_PICK,
                        android.provider.MediaStore.Images.Media.EXTERNAL_CONTENT_URI);

                startActivityForResult(i, requestCode);

                bitmap = BitmapFactory.decodeFile(filePath);
                imageView.setImageBitmap(bitmap);
            }
        });
    } catch (Exception e) {
        Log.e(TAG, "Selection is not working!");
    }

    try {
        templateButton.setOnClickListener(new View.OnClickListener() {

            @Override
            public void onClick(View arg0) {
                if (imageView.getDrawable() == null) {
                    Log.e(TAG, "Null ImageView!");
                }
                Log.e(TAG, "Button is working.");
                try {
                    bitmap = BitmapFactory.decodeFile(filePath);
                    bitmap = Bitmap.createScaledBitmap(bitmap, bitmapWidth, bitmapHeight, true);
                    Mat frame = new Mat(bitmap.getWidth(), bitmap.getHeight(), CvType.CV_8UC4);
                    Utils.bitmapToMat(bitmap, frame);

                    GlobalClass globalVariable = (GlobalClass) getApplicationContext();
                    globalVariable.setTemplateCapturedBitmapHeight(bitmapHeight);
                    globalVariable.setTemplateCapturedBitmapWidth(bitmapWidth);
                    Log.e(TAG, "Bitmap has been set successfully; Template is being generated!");

                    rect = new Rect(x0final, y0final, x1final - x0final, y1final - y0final);
                    Utils.matToBitmap(frame, bitmap);

                    if (x0final < x1final) {
                        x0display = x0final;
                        x1display = x1final;
                    }
                    if (x0final > x1final) {
                        x1display = x0final;
                        x0display = x1final;
                    }
                    if (y0final < y1final) {
                        y0display = y0final;
                        y1display = y1final;
                    }
                    if (y0final > y1final) {
                        y1display = y0final;
                        y0display = y1final;
                    }

                    long timeBegin = (int) System.currentTimeMillis();

                    bitmap = Bitmap.createBitmap(bitmap, x0display, y0display, x1display - x0display,
                            y1display - y0display);

                    /*String path = Environment.getExternalStorageDirectory().toString();
                            
                    Log.e(TAG, "File is about to be written!");
                            
                    //File file = new File(path, "TraQuad");
                    //bitmap.compress(Bitmap.CompressFormat.PNG, 100, fOutputStream);
                            
                    //Log.e(TAG, "Stored image successfully!");
                    //fOutputStream.flush();
                    //fOutputStream.close();
                            
                    //MediaStore.Images.Media.insertImage(getContentResolver(), file.getAbsolutePath(), file.getName(), file.getName());*/

                    /*Prominent colors code; This is not working in Android; OpenCV assertion error
                    Log.e(TAG, "Retrieved image successfully!");
                            
                    Imgproc.medianBlur(frame, frame, 3);
                    Log.e(TAG, "Filtered image successfully!");
                            
                    try {
                    Mat mask = new Mat(bitmap.getWidth(), bitmap.getHeight(), CvType.CV_8UC1);
                    MatOfFloat range = new MatOfFloat(0f, 255f);
                    Mat hist = new Mat();
                    MatOfInt mHistSize = new MatOfInt(256);
                    List<Mat> lHsv = new ArrayList<Mat>(3);
                    Mat hsv = new Mat();
                    Imgproc.cvtColor(frame, hsv, Imgproc.COLOR_RGB2HSV);
                    Core.split(frame, lHsv);
                    Mat mH = lHsv.get(0);
                    Mat mS = lHsv.get(1);
                    Mat mV = lHsv.get(2);
                    ArrayList<Mat> ListMat = new ArrayList<Mat>();
                    ListMat.add(mH);
                    Log.e(TAG, String.valueOf(ListMat));
                    MatOfInt channels = new MatOfInt(0, 1);
                    Imgproc.calcHist(Arrays.asList(mH), channels, mask, hist, mHistSize, range);
                    ListMat.clear();
                    }catch (Exception e){
                    Log.e(TAG, "Prominent colors are not getting detected!");
                    }*/

                    Mat colorFrame = frame;
                    colorFrame = frame.clone();

                    Utils.bitmapToMat(bitmap, frame);
                    Imgproc.cvtColor(frame, frame, Imgproc.COLOR_RGB2GRAY);

                    Log.e(TAG, "Converted color successfully!");

                    int detectorType = FeatureDetector.ORB;
                    //int detectorType = FeatureDetector.SIFT; //SIFT and SURF are not working!
                    //int detectorType = FeatureDetector.SURF;
                    FeatureDetector featureDetector = FeatureDetector.create(detectorType);

                    Log.e(TAG, "Feature detection has begun!");

                    MatOfKeyPoint keypoints = new MatOfKeyPoint();

                    featureDetector.detect(frame, keypoints);

                    Log.e(TAG, "Feature detection has ended successfully!");

                    /*if (!featureDetector.empty()) {
                    //Draw the detected keypoints
                    int flagDraw = Features2d.NOT_DRAW_SINGLE_POINTS;
                    Features2d.drawKeypoints(frame, keypoints, frame, color, flagDraw);
                    Utils.matToBitmap(frame, bitmap);
                    }*/

                    imageView.setImageBitmap(bitmap);

                    Log.e(TAG, "Final bitmap has been loaded!");

                    KeyPoint[] referenceKeypoints = keypoints.toArray();

                    Log.e(TAG, "Number of keypoints detected is " + String.valueOf(referenceKeypoints.length));

                    int iterationMax = referenceKeypoints.length;
                    int iterate = 0;
                    double xFeaturePoint, yFeaturePoint;
                    double xSum = 0, ySum = 0;
                    double totalResponse = 0;
                    double keyPointResponse = 0;
                    double xTemplateCentroid = 0, yTemplateCentroid = 0;

                    DescriptorExtractor descriptorExtractor = DescriptorExtractor
                            .create(DescriptorExtractor.ORB);

                    Mat templateDescriptor = new Mat();

                    descriptorExtractor.compute(frame, keypoints, templateDescriptor);

                    for (iterate = 0; iterate < iterationMax; iterate++) {
                        xFeaturePoint = referenceKeypoints[iterate].pt.x;
                        yFeaturePoint = referenceKeypoints[iterate].pt.y;
                        keyPointResponse = referenceKeypoints[iterate].response;

                        if (keyPointResponse > 0) {
                            xSum = xSum + keyPointResponse * xFeaturePoint;
                            ySum = ySum + keyPointResponse * yFeaturePoint;
                            totalResponse = totalResponse + keyPointResponse;

                            //Log.e(TAG, "Feature " + String.valueOf(iterate) + ":" + String.valueOf(referenceKeypoints[iterate]));
                        }
                    }

                    xTemplateCentroid = xSum / totalResponse;
                    yTemplateCentroid = ySum / totalResponse;
                    Log.e(TAG, "Finished conversion of features to points!");
                    Log.e(TAG, "Centroid location is: (" + xTemplateCentroid + "," + yTemplateCentroid + ")");

                    double xSquareDistance = 0, ySquareDistance = 0;
                    double distanceTemplateFeatures = 0;
                    int numberOfPositiveResponses = 0;

                    double[] colorValue;
                    double rSum = 0, gSum = 0, bSum = 0;
                    double rCentral, gCentral, bCentral;

                    for (iterate = 0; iterate < iterationMax; iterate++) {
                        xFeaturePoint = referenceKeypoints[iterate].pt.x;
                        yFeaturePoint = referenceKeypoints[iterate].pt.y;
                        keyPointResponse = referenceKeypoints[iterate].response;

                        colorValue = colorFrame.get((int) yFeaturePoint, (int) xFeaturePoint);
                        rSum = rSum + colorValue[0];
                        gSum = gSum + colorValue[1];
                        bSum = bSum + colorValue[2];

                        if (keyPointResponse > 0) {
                            xSquareDistance = xSquareDistance
                                    + (xFeaturePoint - xTemplateCentroid) * (xFeaturePoint - xTemplateCentroid);
                            ySquareDistance = ySquareDistance
                                    + (yFeaturePoint - yTemplateCentroid) * (yFeaturePoint - yTemplateCentroid);
                            numberOfPositiveResponses++;
                        }
                    }

                    rCentral = rSum / iterationMax;
                    gCentral = gSum / iterationMax;
                    bCentral = bSum / iterationMax;

                    double deltaColor = 21;

                    double rLow = rCentral - deltaColor;
                    double rHigh = rCentral + deltaColor;
                    double gLow = rCentral - deltaColor;
                    double gHigh = rCentral + deltaColor;
                    double bLow = rCentral - deltaColor;
                    double bHigh = rCentral + deltaColor;

                    Log.e(TAG, "Prominent color (R,G,B): (" + rCentral + "," + gCentral + "," + bCentral + ")");

                    distanceTemplateFeatures = Math
                            .sqrt((xSquareDistance + ySquareDistance) / numberOfPositiveResponses);

                    KeyPoint[] offsetCompensatedKeyPoints = keypoints.toArray();

                    double xMaxNormalisation, yMaxNormalisation;

                    xMaxNormalisation = x1display - x0display;
                    yMaxNormalisation = y1display - y0display;

                    for (iterate = 0; iterate < iterationMax; iterate++) {
                        offsetCompensatedKeyPoints[iterate].pt.x = offsetCompensatedKeyPoints[iterate].pt.x
                                / xMaxNormalisation;
                        offsetCompensatedKeyPoints[iterate].pt.y = offsetCompensatedKeyPoints[iterate].pt.y
                                / yMaxNormalisation;

                        //Log.e(TAG, "Compensated: (" + String.valueOf(offsetCompensatedKeyPoints[iterate].pt.x) + "," + String.valueOf(offsetCompensatedKeyPoints[iterate].pt.y) + ")");
                    }

                    double xCentroidNormalised, yCentroidNormalised;

                    xCentroidNormalised = (xTemplateCentroid - x0display) / xMaxNormalisation;
                    yCentroidNormalised = (yTemplateCentroid - y0display) / yMaxNormalisation;

                    Log.e(TAG, "Normalised Centroid: (" + String.valueOf(xCentroidNormalised) + ","
                            + String.valueOf(yCentroidNormalised));

                    long timeEnd = (int) System.currentTimeMillis();
                    Log.e(TAG, "Time consumed is " + String.valueOf(timeEnd - timeBegin) + " milli-seconds!");

                    Log.e(TAG, "RMS distance is: " + distanceTemplateFeatures);

                    globalVariable.setDistanceTemplateFeatures(distanceTemplateFeatures);
                    globalVariable.setX0display(x0display);
                    globalVariable.setY0display(y0display);
                    globalVariable.setX1display(x1display);
                    globalVariable.setY1display(y1display);
                    globalVariable.setKeypoints(keypoints);
                    globalVariable.setXtemplateCentroid(xTemplateCentroid);
                    globalVariable.setYtemplateCentroid(yTemplateCentroid);
                    globalVariable.setTemplateDescriptor(templateDescriptor);
                    globalVariable.setNumberOfTemplateFeatures(iterationMax);
                    globalVariable.setNumberOfPositiveTemplateFeatures(numberOfPositiveResponses);
                    globalVariable.setRhigh(rHigh);
                    globalVariable.setRlow(rLow);
                    globalVariable.setGhigh(gHigh);
                    globalVariable.setGlow(gLow);
                    globalVariable.setBhigh(bHigh);
                    globalVariable.setBlow(bLow);
                    globalVariable.setXnormalisedCentroid(xCentroidNormalised);
                    globalVariable.setYnormalisedCentroid(yCentroidNormalised);
                    globalVariable.setNormalisedTemplateKeyPoints(offsetCompensatedKeyPoints);

                    Log.e(TAG, "Finished setting the global variables!");

                } catch (Exception e) {
                    Log.e(TAG, "Please follow instructions!");
                }
            }
        });
    } catch (Exception e) {
        Log.e(TAG, "Template is not working!");
    }

}

From source file:com.astrocytes.core.operationsengine.CoreOperations.java

License:Open Source License

/**
 * Calculates an intensity of specified pixel on image. Use for color image.
 *
 * @param src - source image//from  w  ww  .j av  a 2s  . c  om
 * @param x - a column of pixel on image.
 * @param y - a row of pixel on image.
 * @return an intensity of pixel ({@param x}, {@param y}).
 */
public static int intensity(Mat src, int x, int y) {
    double[] pixel = src.get(y, x);

    if (pixel == null)
        return 0;

    if (pixel.length == 1) {
        return (int) pixel[0];
    }

    return (int) (0.11 * pixel[2] + 0.53 * pixel[1] + 0.36 * pixel[0]);
}

From source file:com.astrocytes.core.operationsengine.OperationsImpl.java

License:Open Source License

private void detectLayers() {
    Mat equalizedImage = CoreOperations.invert(CoreOperations.equalize(sourceImage));

    int halfColumnWidth = 50;
    Mat density = new Mat(equalizedImage.rows(), equalizedImage.cols(), CvType.CV_32F);
    int rows = density.rows();
    int cols = density.cols();

    // > 1 min
    for (int i = 0; i < rows; i++) {
        double p;
        int leftBoundInterval, rightBoundInterval, intervalLength;
        for (int j = 0; j < cols; j++) {
            p = 0.0;/*from w  w w .java2s  . c  o  m*/
            leftBoundInterval = Math.max(j - halfColumnWidth, 0);
            rightBoundInterval = Math.min(cols - 1, j + halfColumnWidth);
            intervalLength = rightBoundInterval - leftBoundInterval + 1;

            for (int s = leftBoundInterval; s <= rightBoundInterval; s++) {
                p += equalizedImage.get(i, s)[0];
            }

            density.put(i, j, p / intervalLength);
        }
    }

    //3 seconds
    for (int j = 0; j < cols; j++) {
        double intensity = 0.0;

        for (int i = 0; i < rows; i++) {
            intensity += density.get(i, j)[0];
        }

        for (int i = 0; i < rows; i++) {
            density.put(i, j, density.get(i, j)[0] / intensity);
        }
    }

    double ndlAverage = 1.0 / (double) rows;

    layerBounds = new Mat(6, cols, CvType.CV_32F);
    double k1 = 0.56E-4;
    double k2 = 1.3E-4;

    /*float[] data = new float[density.rows() * (int) density.elemSize()];
    density.get(0, 10, data);*/

    Mat upperBoundExact = new Mat(1, cols, CvType.CV_32F);
    Mat lowerBoundExact = new Mat(1, cols, CvType.CV_32F);

    for (int j = 0; j < cols; j++) {
        int upperBound = 0;
        int lowerBound = 0;

        for (int i = 0; i < rows; i++) {
            if (density.get(i, j)[0] > ndlAverage + k1) {
                upperBound = i;
                break;
            }
        }
        for (int i = rows - 1; i >= 0; i--) {
            if (density.get(i, j)[0] > ndlAverage + k2) {
                lowerBound = i;
                break;
            }
        }

        upperBoundExact.put(0, j, upperBound);
        lowerBoundExact.put(0, j, lowerBound);
    }

    //moving average for bounds
    int movingAverage = 300;
    for (int i = 0; i < upperBoundExact.cols(); i++) {
        int leftBoundInterval = Math.max(i - movingAverage, 0);
        int rightBoundInterval = Math.min(cols - 1, i + movingAverage);
        int intervalLength = rightBoundInterval - leftBoundInterval + 1;
        int upperBoundAverage = 0;
        int lowerBoundAverage = 0;

        for (int j = leftBoundInterval; j <= rightBoundInterval; j++) {
            upperBoundAverage += upperBoundExact.get(0, j)[0];
            lowerBoundAverage += lowerBoundExact.get(0, j)[0];
        }

        upperBoundAverage /= intervalLength;
        lowerBoundAverage /= intervalLength;
        int columnHeight = lowerBoundAverage - upperBoundAverage;
        layerBounds.put(0, i, upperBoundAverage);
        for (int h = 1; h < 5; h++) {
            layerBounds.put(h, i, upperBoundAverage + BRODMANN_COEFFS[h - 1] * columnHeight);
        }
        layerBounds.put(5, i, lowerBoundAverage);
    }
}

From source file:com.astrocytes.core.operationsengine.OperationsImpl.java

License:Open Source License

private Mat applyRayCastingSegmentation() {
    //Mat cannyEdges = CoreOperations.cannyFilter(sourceImage, 26, 58);
    Mat contours = new Mat(preparedImage.rows(), preparedImage.cols(), CvType.CV_32S);
    int contoursCount = /*neurons.size();*/ CoreOperations
            .drawAllContours(CoreOperations.erode(preparedImage, 5), contours);
    Mat result = new Mat(preparedImage.rows(), preparedImage.cols(), preparedImage.type());//CoreOperations.or(CoreOperations.and(cannyEdges, CoreOperations.grayscale(preparedImage)), contours);
    //cannyEdges.release();

    //Mat markers = new Mat(contours.rows(), contours.cols(), CvType.CV_32S);
    //contours.copyTo(markers);
    contours.convertTo(contours, CvType.CV_32S);

    for (Neuron neuron : neurons) {
        int x = (int) neuron.getCenter().x;
        int y = (int) neuron.getCenter().y;
        int color = (int) preparedImage.get(y, x)[0];
        /*contours.put(y, x, color);
        contours.put(y - 2, x, color);//from  w w  w .  j  a va2s  .co  m
        contours.put(y + 2, x, color);
        contours.put(y, x - 2, color);
        contours.put(y, x + 2, color);*/
        Imgproc.circle(contours, neuron.getCenter(), (int) (0.4f * neuron.getRadius()), new Scalar(color), -1);
    }

    Imgproc.watershed(sourceImage, contours);

    for (int i = 0; i < contours.rows(); i++) {
        for (int j = 0; j < contours.cols(); j++) {
            int index = (int) contours.get(i, j)[0];
            if (index == -1) {
                result.put(i, j, 0, 0, 0);
            } else if (index <= 0 || index > contoursCount) {
                result.put(i, j, 0, 0, 0);
            } else {
                if (index == 255) {
                    result.put(i, j, 0, 0, 0/*sourceImage.get(i, j)*/);
                } else {
                    result.put(i, j, index, index, index);
                }
            }
        }
    }

    result = CoreOperations.erode(result, 2);
    result = CoreOperations.dilate(result, 3);

    contours.release();

    contours = sourceImage.clone();
    CoreOperations.drawAllContours(result, contours);

    return contours;
}

From source file:com.astrocytes.core.operationsengine.OperationsImpl.java

License:Open Source License

private List<Mat> showClusters(Mat cutout, Mat labels, Mat centers) {
    centers.convertTo(centers, CvType.CV_8UC1, 255.0);
    centers.reshape(3);/* w ww  .  ja  va 2 s  .co  m*/

    List<Mat> clusters = new ArrayList<Mat>();
    for (int i = 0; i < centers.rows(); i++) {
        clusters.add(Mat.zeros(cutout.size(), cutout.type()));
    }

    Map<Integer, Integer> counts = new HashMap<Integer, Integer>();
    for (int i = 0; i < centers.rows(); i++) {
        counts.put(i, 0);
    }

    for (int y = 0; y < cutout.rows(); y++) {
        int rows = 0;
        for (int x = 0; x < cutout.cols(); x++) {
            int label = (int) labels.get(rows, 0)[0];
            int r = (int) centers.get(label, 2)[0];
            int g = (int) centers.get(label, 1)[0];
            int b = (int) centers.get(label, 0)[0];
            counts.put(label, counts.get(label) + 1);
            clusters.get(label).put(y, x, b, g, r);
            rows++;
        }
    }
    System.out.println(counts);
    return clusters;
}