List of usage examples for org.opencv.core Mat cols
public int cols()
From source file:org.firstinspires.ftc.teamcode.vision.VisionLib.java
public double getCenterVortexWidth() { Mat matIn = getCameraMat(); if (matIn != null) { Log.d(TAG, "mat null"); Imgproc.cvtColor(matIn, matIn, Imgproc.COLOR_RGB2HSV); Mat matMasked = new Mat(matIn.rows(), matIn.cols(), CvType.CV_8UC1); Scalar vortexLowerThresh = new Scalar(37, 46, 34); Scalar vortexUpperThresh = new Scalar(163, 255, 255); Core.inRange(matIn, BLUE_LOWER_THRESH, BLUE_UPPER_THRESH, matMasked); //find largest contour (the part of the beacon we are interested in ArrayList<MatOfPoint> contours = new ArrayList<MatOfPoint>(); Mat hierarchy = new Mat(); Mat contourMat = matMasked.clone(); Imgproc.findContours(contourMat, contours, hierarchy, Imgproc.RETR_EXTERNAL, Imgproc.CHAIN_APPROX_SIMPLE); if (contours.size() > 1) { int largestContourIndex = 0; double lastContourArea = 0; for (int i = 0; i < contours.size(); i++) { double contourArea = Imgproc.contourArea(contours.get(i)); if (contourArea > lastContourArea) { largestContourIndex = i; lastContourArea = contourArea; }//from www. j a v a 2 s. co m } //get bounding rect Rect boundingRect = Imgproc .boundingRect(new MatOfPoint(contours.get(largestContourIndex).toArray())); Core.rectangle(matIn, new Point(boundingRect.x, boundingRect.y), new Point(boundingRect.x + boundingRect.width, boundingRect.y + boundingRect.height), OPEN_CV_GREEN); saveMatToDisk(matIn);//debug only return boundingRect.width; } } return -1; }
From source file:org.firstinspires.ftc.teamcode.vision.VisionLib.java
public int getBlueSide() { Mat matIn = getCameraMat(); if (matIn != null) { Imgproc.cvtColor(matIn, matIn, Imgproc.COLOR_RGB2HSV); Mat matMasked = new Mat(matIn.rows(), matIn.cols(), CvType.CV_8UC1); Core.inRange(matIn, BLUE_LOWER_THRESH, BLUE_UPPER_THRESH, matMasked); //find largest contour (the part of the beacon we are interested in ArrayList<MatOfPoint> contours = new ArrayList<MatOfPoint>(); Mat hierarchy = new Mat(); Mat contourMat = matMasked.clone(); Imgproc.findContours(contourMat, contours, hierarchy, Imgproc.RETR_EXTERNAL, Imgproc.CHAIN_APPROX_SIMPLE); if (contours.size() > 1) { int largestContourIndex = 0; double lastContourArea = 0; for (int i = 0; i < contours.size(); i++) { double contourArea = Imgproc.contourArea(contours.get(i)); if (contourArea > lastContourArea) { largestContourIndex = i; lastContourArea = contourArea; }/*from w w w. j av a 2 s . c o m*/ } //get bounding rect Rect boundingRect = Imgproc .boundingRect(new MatOfPoint(contours.get(largestContourIndex).toArray())); Core.rectangle(matIn, new Point(boundingRect.x, boundingRect.y), new Point(boundingRect.x + boundingRect.width, boundingRect.y + boundingRect.height), OPEN_CV_GREEN); // saveMatToDisk(matIn);//debug only //find which side its on if (boundingRect.x > matIn.cols() / 2) {//depends on which camera we use Log.d(TAG, "left"); return BLUE_LEFT; } else { Log.d(TAG, "right"); return BLUE_RIGHT; } } Log.d(TAG, "countors:" + contours.size()); return TEST_FAILED; } return TEST_FAILED; }
From source file:org.firstinspires.ftc.teamcode.VuforiaColor.java
public void runOpMode() throws InterruptedException { // frontRightMotor = hardwareMap.dcMotor.get("frontRightMotor"); // backRightMotor = hardwareMap.dcMotor.get("backRightMotor"); // frontLeftMotor = hardwareMap.dcMotor.get("frontLeftMotor"); // backLeftMotor = hardwareMap.dcMotor.get("backLeftMotor"); // rollerMotor = hardwareMap.dcMotor.get("rollerMotor"); //// w w w . j av a 2 s . co m // backRightMotor.setDirection(DcMotor.Direction.REVERSE); // backLeftMotor.setDirection(DcMotor.Direction.REVERSE); colorDetector = new ColorBlobDetector(); VuforiaLocalizer.Parameters parameters = new VuforiaLocalizer.Parameters(R.id.cameraMonitorViewId); parameters.vuforiaLicenseKey = "ATjJBiD/////AAAAGc0JoedLjk5flVb2gExO3UVJCpOq5U4cyH9czcMyX5C8h+1AWXo7A0CU24r/IVeoC+7Te9zwJkX6IjHv5c77UNqrsyerM7pbjywj6/2NlzSUwb3jtEd9APhY5cOoSibb5NDRFM9beUWt0k4HuFMaw5OIZRs5YWge7KaJt5SzhqEFMQ6Loo8eugB9BBbPfuV3d7u4sQZBAKeRsR9mmnfvFJTUHHgcPlALU/rJBgw40AeFFvChjzNhwtlWYymeM/0173jH7JB2dyhoNtn/9byIUQzMw8KtaXbD3IfFJySLgJWmYjaA7cKdboL0nvkOoZNFMm2yqenbUDe/CEIMkhAsKjS3sgX4t6Fq+8gkhSnOS/Vd"; parameters.cameraDirection = VuforiaLocalizer.CameraDirection.FRONT; this.vuforia = ClassFactory.createVuforiaLocalizer(parameters); Vuforia.setFrameFormat(PIXEL_FORMAT.RGB565, true); //enables RGB565 format for the image vuforia.setFrameQueueCapacity(1); //tells VuforiaLocalizer to only store one frame at a time piController = new PIController(.0016, 0.00013, 0.00023, 0.000012); Vuforia.setHint(HINT.HINT_MAX_SIMULTANEOUS_IMAGE_TARGETS, 1); VuforiaTrackables visionTargets = vuforia.loadTrackablesFromAsset("FTC_2016-17"); VuforiaTrackable wheelsTarget = visionTargets.get(0); wheelsTarget.setName("Wheels"); // Wheels VuforiaTrackable toolsTarget = visionTargets.get(1); toolsTarget.setName("Tools"); // Tools VuforiaTrackable legosTarget = visionTargets.get(2); legosTarget.setName("Legos"); // Legos VuforiaTrackable gearsTarget = visionTargets.get(3); gearsTarget.setName("Gears"); // Gears /** For convenience, gather together all the trackable objects in one easily-iterable collection */ List<VuforiaTrackable> allTrackables = new ArrayList<VuforiaTrackable>(); allTrackables.addAll(visionTargets); /** * We use units of mm here because that's the recommended units of measurement for the * size values specified in the XML for the ImageTarget trackables in data sets. E.g.: * <ImageTarget name="stones" size="247 173"/> * You don't *have to* use mm here, but the units here and the units used in the XML * target configuration files *must* correspond for the math to work out correctly. */ float mmPerInch = 25.4f; float mmBotLength = 16 * mmPerInch; float mmBotWidth = 18 * mmPerInch; // ... or whatever is right for your robot float mmFTCFieldWidth = (12 * 12 - 2) * mmPerInch; // the FTC field is ~11'10" center-to-center of the glass panels float mmVisionTargetZOffset = 5.75f * mmPerInch; float mmPhoneZOffset = 5.5f * mmPerInch; OpenGLMatrix gearsTargetLocationOnField = OpenGLMatrix /* Then we translate the target off to the RED WALL. Our translation here is a negative translation in X.*/ .translation(-mmFTCFieldWidth / 2, -mmFTCFieldWidth / 12, mmVisionTargetZOffset) .multiplied(Orientation.getRotationMatrix( /* First, in the fixed (field) coordinate system, we rotate 90deg in X, then 90 in Z */ AxesReference.EXTRINSIC, AxesOrder.XZX, AngleUnit.DEGREES, 90, 90, 0)); gearsTarget.setLocation(gearsTargetLocationOnField); RobotLog.ii(TAG, "Gears Target=%s", format(gearsTargetLocationOnField)); OpenGLMatrix toolsTargetLocationOnField = OpenGLMatrix /* Then we translate the target off to the RED WALL. Our translation here is a negative translation in X.*/ .translation(-mmFTCFieldWidth / 2, mmFTCFieldWidth / 4, mmVisionTargetZOffset) .multiplied(Orientation.getRotationMatrix( /* First, in the fixed (field) coordinate system, we rotate 90deg in X, then 90 in Z */ AxesReference.EXTRINSIC, AxesOrder.XZX, AngleUnit.DEGREES, 90, 90, 0)); toolsTarget.setLocation(toolsTargetLocationOnField); RobotLog.ii(TAG, "Tools Target=%s", format(toolsTargetLocationOnField)); /* * To place the Wheels and Legos Targets on the Blue Audience wall: * - First we rotate it 90 around the field's X axis to flip it upright * - Finally, we translate it along the Y axis towards the blue audience wall. */ OpenGLMatrix wheelsTargetLocationOnField = OpenGLMatrix /* Then we translate the target off to the Blue Audience wall. Our translation here is a positive translation in Y.*/ .translation(mmFTCFieldWidth / 12, mmFTCFieldWidth / 2, mmVisionTargetZOffset) .multiplied(Orientation.getRotationMatrix( /* First, in the fixed (field) coordinate system, we rotate 90deg in X */ AxesReference.EXTRINSIC, AxesOrder.XZX, AngleUnit.DEGREES, 90, 0, 0)); wheelsTarget.setLocation(wheelsTargetLocationOnField); RobotLog.ii(TAG, "Wheels Target=%s", format(wheelsTargetLocationOnField)); OpenGLMatrix legosTargetLocationOnField = OpenGLMatrix /* Then we translate the target off to the Blue Audience wall. Our translation here is a positive translation in Y.*/ .translation(-mmFTCFieldWidth / 4, mmFTCFieldWidth / 2, mmVisionTargetZOffset) .multiplied(Orientation.getRotationMatrix( /* First, in the fixed (field) coordinate system, we rotate 90deg in X */ AxesReference.EXTRINSIC, AxesOrder.XZX, AngleUnit.DEGREES, 90, 0, 0)); legosTarget.setLocation(legosTargetLocationOnField); RobotLog.ii(TAG, "Legos Target=%s", format(legosTargetLocationOnField)); /** * Create a transformation matrix describing where the phone is on the robot. Here, we * put the phone on the right hand side of the robot with the screen facing in (see our * choice of BACK camera above) and in landscape mode. Starting from alignment between the * robot's and phone's axes, this is a rotation of -90deg along the Y axis. * * When determining whether a rotation is positive or negative, consider yourself as looking * down the (positive) axis of rotation from the positive towards the origin. Positive rotations * are then CCW, and negative rotations CW. An example: consider looking down the positive Z * axis towards the origin. A positive rotation about Z (ie: a rotation parallel to the the X-Y * plane) is then CCW, as one would normally expect from the usual classic 2D geometry. */ OpenGLMatrix phoneLocationOnRobot = OpenGLMatrix.translation(mmBotWidth / 2, 0, mmPhoneZOffset) .multiplied(Orientation.getRotationMatrix(AxesReference.EXTRINSIC, AxesOrder.YZY, AngleUnit.DEGREES, 0, 180, 0)); RobotLog.ii(TAG, "phone=%s", format(phoneLocationOnRobot)); ((VuforiaTrackableDefaultListener) visionTargets.get(0).getListener()) .setPhoneInformation(phoneLocationOnRobot, parameters.cameraDirection); ((VuforiaTrackableDefaultListener) visionTargets.get(1).getListener()) .setPhoneInformation(phoneLocationOnRobot, parameters.cameraDirection); ((VuforiaTrackableDefaultListener) visionTargets.get(2).getListener()) .setPhoneInformation(phoneLocationOnRobot, parameters.cameraDirection); ((VuforiaTrackableDefaultListener) visionTargets.get(3).getListener()) .setPhoneInformation(phoneLocationOnRobot, parameters.cameraDirection); /** Wait for the game to begin */ telemetry.addData(">", "Press Play to start tracking"); telemetry.addData("OpenCV", Core.NATIVE_LIBRARY_NAME); telemetry.update(); waitForStart(); /** Start tracking the data sets we care about. */ visionTargets.activate(); hitRed = true; isButtonHit = false; directionFoundInARow = 0; directionToHit = ""; telemetry.addData("Loop", "Out"); telemetry.update(); while (opModeIsActive()) { String visibleTarget = ""; Mat img = null; Mat croppedImg = null; Point beaconImageCenter = null; VuforiaLocalizer.CloseableFrame frame = vuforia.getFrameQueue().take(); telemetry.update(); if (frame != null) { Image rgb = null; long numImages = frame.getNumImages(); for (int i = 0; i < numImages; i++) { if (frame.getImage(i).getFormat() == PIXEL_FORMAT.RGB565) { rgb = frame.getImage(i); break; } //if } //for if (rgb != null) { Bitmap bmp = Bitmap.createBitmap(rgb.getWidth(), rgb.getHeight(), Bitmap.Config.RGB_565); bmp.copyPixelsFromBuffer(rgb.getPixels()); img = new Mat(); Utils.bitmapToMat(bmp, img); telemetry.addData("Img", "Converted"); telemetry.update(); } } for (VuforiaTrackable beacon : allTrackables) { // Add beacon to telemetry if visible if (((VuforiaTrackableDefaultListener) beacon.getListener()).isVisible()) { visibleTarget = beacon.getName(); telemetry.addData(visibleTarget, "Visible"); } OpenGLMatrix robotLocationTransform = ((VuforiaTrackableDefaultListener) beacon.getListener()) .getUpdatedRobotLocation(); if (robotLocationTransform != null) { lastLocation = robotLocationTransform; } OpenGLMatrix pose = ((VuforiaTrackableDefaultListener) beacon.getListener()).getRawPose(); if (pose != null) { Matrix34F rawPose = new Matrix34F(); float[] poseData = Arrays.copyOfRange(pose.transposed().getData(), 0, 12); rawPose.setData(poseData); // Corners of beacon image in camera image Vec2F upperLeft = Tool.projectPoint(vuforia.getCameraCalibration(), rawPose, new Vec3F(-127, 92, 0)); Vec2F upperRight = Tool.projectPoint(vuforia.getCameraCalibration(), rawPose, new Vec3F(127, 92, 0)); Vec2F lowerLeft = Tool.projectPoint(vuforia.getCameraCalibration(), rawPose, new Vec3F(-127, -92, 0)); Vec2F lowerRight = Tool.projectPoint(vuforia.getCameraCalibration(), rawPose, new Vec3F(127, -92, 0)); VectorF translation = pose.getTranslation(); /** First argument is get(1) if phone is vertical First argument is get(0) if phone is horizontal */ if (img != null && !isButtonHit) { telemetry.addData(beacon.getName() + "-Translation", translation); // Vectors are stored (y,x). Coordinate system starts in top right int height = (int) (upperLeft.getData()[0] - lowerLeft.getData()[0]); int width = (int) (upperRight.getData()[1] - upperLeft.getData()[1]); int rowStart = (int) upperRight.getData()[0] - height < 0 ? 1 : (int) upperRight.getData()[0] - height; int rowEnd = rowStart + height > img.rows() ? img.rows() - 1 : rowStart + height; int colStart = (int) upperRight.getData()[1] < 0 ? 1 : (int) upperRight.getData()[1]; int colEnd = colStart + width > img.cols() ? img.cols() - 1 : colStart + width; telemetry.addData("Target Location", ""); telemetry.addData("[" + upperLeft.getData()[0] + "," + upperLeft.getData()[1] + "]", "[" + upperRight.getData()[0] + "," + upperRight.getData()[1] + "]"); telemetry.addData("[" + lowerLeft.getData()[0] + "," + lowerLeft.getData()[1] + "]", "[" + lowerRight.getData()[0] + "," + lowerRight.getData()[1] + "]"); telemetry.addData(colStart + "", rowStart); telemetry.addData(colEnd + "", rowEnd); telemetry.addData(img.rows() + "", img.cols()); telemetry.update(); // Crop the image to look only at the beacon // TODO Verify beacon is in cropped image // NEED TO CHECK BEACON HEIGHT FOR INCLUSION IN CROPPED IMAGE croppedImg = img.submat(rowStart, rowEnd, colStart, colEnd); } } } // Process the rgb image if (croppedImg != null && !isButtonHit) { // Find the color of the beacon you need to hit if (hitRed) { colorDetector.setHsvColor(new Scalar(230, 75, 255)); // Red detector, needs verification with beacon } else { colorDetector.setHsvColor(new Scalar(130, 150, 255)); // Blue detector, needs verification with beacon } colorDetector.process(croppedImg); // Calculate the center of the blob detected Point beaconToHitCenter = null; List<Moments> blueMu = new ArrayList<>(colorDetector.getContours().size()); for (int i = 0; i < colorDetector.getContours().size(); i++) { blueMu.add(Imgproc.moments(colorDetector.getContours().get(i), false)); Moments p = blueMu.get(i); int x = (int) (p.get_m10() / p.get_m00()); int y = (int) (p.get_m01() / p.get_m00()); beaconToHitCenter = new Point(x, y); } // Find the color of the beacon you are not hitting if (hitRed) { colorDetector.setHsvColor(new Scalar(130, 150, 255)); // Blue detector, needs verification with beacon } else { colorDetector.setHsvColor(new Scalar(230, 75, 255)); // Red detector, needs verification with beacon } colorDetector.process(croppedImg); // Calculate the center of the blob detected Point secondReferenceCenter = null; List<Moments> redMu = new ArrayList<>(colorDetector.getContours().size()); for (int i = 0; i < colorDetector.getContours().size(); i++) { redMu.add(Imgproc.moments(colorDetector.getContours().get(i), false)); Moments p = redMu.get(i); int x = (int) (p.get_m10() / p.get_m00()); int y = (int) (p.get_m01() / p.get_m00()); secondReferenceCenter = new Point(x, y); } // Use the two centers of the blobs to determine which direction to hit if (beaconToHitCenter != null && secondReferenceCenter != null && !isButtonHit) { // (!isButtonHit) Only hit the button once // (!needToTurn) Do not hit the button if the robot is not straight centered // hitBeaconButton(isLeft(center, beaconImageCenter)); if (isLeft(beaconToHitCenter, secondReferenceCenter)) { if (!directionToHit.equals("Left")) { directionFoundInARow = 0; } directionFoundInARow++; directionToHit = "Left"; } else { if (!directionToHit.equals("Right")) { directionFoundInARow = 0; } directionFoundInARow++; directionToHit = "Right"; } } // Find the color five times in a row before hitting it if (directionFoundInARow >= 3) { isButtonHit = true; } } if (isButtonHit) { telemetry.addData("Hit Button-", directionToHit); } // if(needToTurn) { // turn(degreesToTurn); // telemetry.addData("Turn-", degreesToTurn); // } /** * Provide feedback as to where the robot was last located (if we know). */ if (lastLocation != null) { // RobotLog.vv(TAG, "robot=%s", format(lastLocation)); telemetry.addData("Pos", myFormat(lastLocation)); if (!visibleTarget.equals("")) { telemetry.addData("Move", piController.processLocation(lastLocation, visibleTarget)); } } else { telemetry.addData("Pos", "Unknown"); } telemetry.update(); idle(); } }
From source file:org.firstinspires.ftc.teamcode.VuforiaMovement.java
public void runOpMode() throws InterruptedException { frontRightMotor = hardwareMap.dcMotor.get("frontRightMotor"); backRightMotor = hardwareMap.dcMotor.get("backRightMotor"); frontLeftMotor = hardwareMap.dcMotor.get("frontLeftMotor"); backLeftMotor = hardwareMap.dcMotor.get("backLeftMotor"); rollerMotor = hardwareMap.dcMotor.get("rollerMotor"); backRightMotor.setDirection(DcMotor.Direction.REVERSE); backLeftMotor.setDirection(DcMotor.Direction.REVERSE); colorDetector = new ColorBlobDetector(); VuforiaLocalizer.Parameters parameters = new VuforiaLocalizer.Parameters(R.id.cameraMonitorViewId); parameters.vuforiaLicenseKey = "ATjJBiD/////AAAAGc0JoedLjk5flVb2gExO3UVJCpOq5U4cyH9czcMyX5C8h+1AWXo7A0CU24r/IVeoC+7Te9zwJkX6IjHv5c77UNqrsyerM7pbjywj6/2NlzSUwb3jtEd9APhY5cOoSibb5NDRFM9beUWt0k4HuFMaw5OIZRs5YWge7KaJt5SzhqEFMQ6Loo8eugB9BBbPfuV3d7u4sQZBAKeRsR9mmnfvFJTUHHgcPlALU/rJBgw40AeFFvChjzNhwtlWYymeM/0173jH7JB2dyhoNtn/9byIUQzMw8KtaXbD3IfFJySLgJWmYjaA7cKdboL0nvkOoZNFMm2yqenbUDe/CEIMkhAsKjS3sgX4t6Fq+8gkhSnOS/Vd"; parameters.cameraDirection = VuforiaLocalizer.CameraDirection.BACK; this.vuforia = new VuforiaLocalizerImplSubclass(parameters); Vuforia.setHint(HINT.HINT_MAX_SIMULTANEOUS_IMAGE_TARGETS, 4); VuforiaTrackables beacons = vuforia.loadTrackablesFromAsset("FTC_2016-17"); beacons.get(0).setName("Wheels"); beacons.get(1).setName("Tools"); beacons.get(2).setName("Legos"); beacons.get(3).setName("Gears"); float mmPerInch = 25.4f; float mmBotWidth = 18 * mmPerInch; // ... or whatever is right for your robot float mmFTCFieldWidth = (12 * 12 - 2) * mmPerInch; // the FTC field is ~11'10" center-to-center of the glass panels float mmVisionTargetZOffset = 5.75f * mmPerInch; // Initialize the location of the targets and phone on the field OpenGLMatrix wheelsTargetLocationOnField = OpenGLMatrix /* Then we translate the target off to the Blue Audience wall. Our translation here is a positive translation in Y.*/ .translation(mmFTCFieldWidth / 12, mmFTCFieldWidth / 2, mmVisionTargetZOffset) .multiplied(Orientation.getRotationMatrix( /* First, in the fixed (field) coordinate system, we rotate 90deg in X */ AxesReference.EXTRINSIC, AxesOrder.XZX, AngleUnit.DEGREES, 90, 0, 0)); beacons.get(0).setLocation(wheelsTargetLocationOnField); RobotLog.ii(TAG, "Wheels Target=%s", format(wheelsTargetLocationOnField)); OpenGLMatrix toolsTargetLocationOnField = OpenGLMatrix /* Then we translate the target off to the RED WALL. Our translation here is a negative translation in X.*/ .translation(-mmFTCFieldWidth / 2, mmFTCFieldWidth / 4, mmVisionTargetZOffset) .multiplied(Orientation.getRotationMatrix( /* First, in the fixed (field) coordinate system, we rotate 90deg in X, then 90 in Z */ AxesReference.EXTRINSIC, AxesOrder.XZX, AngleUnit.DEGREES, 90, 90, 0)); beacons.get(1).setLocation(toolsTargetLocationOnField); RobotLog.ii(TAG, "Tools Target=%s", format(toolsTargetLocationOnField)); OpenGLMatrix legosTargetLocationOnField = OpenGLMatrix /* Then we translate the target off to the Blue Audience wall. Our translation here is a positive translation in Y.*/ .translation(-mmFTCFieldWidth / 4, mmFTCFieldWidth / 2, mmVisionTargetZOffset) .multiplied(Orientation.getRotationMatrix( /* First, in the fixed (field) coordinate system, we rotate 90deg in X */ AxesReference.EXTRINSIC, AxesOrder.XZX, AngleUnit.DEGREES, 90, 0, 0)); beacons.get(2).setLocation(legosTargetLocationOnField); RobotLog.ii(TAG, "Legos Target=%s", format(legosTargetLocationOnField)); OpenGLMatrix gearsTargetLocationOnField = OpenGLMatrix /* Then we translate the target off to the RED WALL. Our translation here is a negative translation in X.*/ .translation(-mmFTCFieldWidth / 2, -mmFTCFieldWidth / 12, mmVisionTargetZOffset) .multiplied(Orientation.getRotationMatrix( /* First, in the fixed (field) coordinate system, we rotate 90deg in X, then 90 in Z */ AxesReference.EXTRINSIC, AxesOrder.XZX, AngleUnit.DEGREES, 90, 90, 0)); beacons.get(3).setLocation(gearsTargetLocationOnField); RobotLog.ii(TAG, "Gears Target=%s", format(gearsTargetLocationOnField)); OpenGLMatrix phoneLocationOnRobot = OpenGLMatrix.translation(mmBotWidth / 2, 0, 0).multiplied(Orientation .getRotationMatrix(AxesReference.EXTRINSIC, AxesOrder.YZY, AngleUnit.DEGREES, -90, 0, 0)); RobotLog.ii(TAG, "Phone=%s", format(phoneLocationOnRobot)); ((VuforiaTrackableDefaultListener) beacons.get(0).getListener()).setPhoneInformation(phoneLocationOnRobot, parameters.cameraDirection); ((VuforiaTrackableDefaultListener) beacons.get(1).getListener()).setPhoneInformation(phoneLocationOnRobot, parameters.cameraDirection); ((VuforiaTrackableDefaultListener) beacons.get(2).getListener()).setPhoneInformation(phoneLocationOnRobot, parameters.cameraDirection); ((VuforiaTrackableDefaultListener) beacons.get(3).getListener()).setPhoneInformation(phoneLocationOnRobot, parameters.cameraDirection); /** Wait for the game to begin */ telemetry.addData(">", "Press Play to start tracking"); telemetry.addData("OpenCV", Core.NATIVE_LIBRARY_NAME); telemetry.update();//ww w. j a v a2s.c o m waitForStart(); /** Start tracking the data sets we care about. */ beacons.activate(); hitRed = true; isButtonHit = false; directionFoundInARow = 0; directionToHit = ""; movingToFirstBeacon = false; liningUpWithFirstBeacon = false; movingToSecondBeacon = false; liningUpWithSecondBeacon = false; while (opModeIsActive()) { String visibleTarget = ""; Mat img = null; Mat croppedImg = null; Point beaconImageCenter = null; if (movingToFirstBeacon) { // TODO Estimate distance to the beacon from a point TBD // TODO Estimate distance to move forward and turn to face the beacon until second movement set // Move this outside the loop? // Move forward until you see the beacon while (movingToFirstBeacon) { // Move in increments to minimize the times you check the trackables for (int i = 0; i < 50; i++) { frontRightMotor.setPower(1); backRightMotor.setPower(1); frontLeftMotor.setPower(1); backLeftMotor.setPower(1); } for (VuforiaTrackable beacon : beacons) { // Add beacon to telemetry if visible if (((VuforiaTrackableDefaultListener) beacon.getListener()).isVisible()) { visibleTarget = beacon.getName(); telemetry.addData(visibleTarget, "Visible"); } OpenGLMatrix robotLocationTransform = ((VuforiaTrackableDefaultListener) beacon .getListener()).getUpdatedRobotLocation(); if (robotLocationTransform != null) { lastLocation = robotLocationTransform; } } // Move to the beacon until the beacon is in sight if (lastLocation != null) { movingToFirstBeacon = false; // Only execute this once } } } while (liningUpWithFirstBeacon) { for (VuforiaTrackable beacon : beacons) { // Add beacon to telemetry if visible if (((VuforiaTrackableDefaultListener) beacon.getListener()).isVisible()) { visibleTarget = beacon.getName(); telemetry.addData(visibleTarget, "Visible"); } OpenGLMatrix robotLocationTransform = ((VuforiaTrackableDefaultListener) beacon.getListener()) .getUpdatedRobotLocation(); if (robotLocationTransform != null) { lastLocation = robotLocationTransform; } } RobotMovement movement = processLocation(lastLocation, visibleTarget); if (movement.isNoMovement()) { liningUpWithFirstBeacon = false; } processMovement(movement); } if (movingToSecondBeacon) { // TODO Estimate the movements/distance from the first beacon to the second movingToSecondBeacon = false; // Only execute this once } if (vuforia.rgb != null && !isButtonHit) { Bitmap bmp = Bitmap.createBitmap(vuforia.rgb.getWidth(), vuforia.rgb.getHeight(), Bitmap.Config.RGB_565); bmp.copyPixelsFromBuffer(vuforia.rgb.getPixels()); img = new Mat(); Utils.bitmapToMat(bmp, img); } for (VuforiaTrackable beacon : beacons) { // Add beacon to telemetry if visible if (((VuforiaTrackableDefaultListener) beacon.getListener()).isVisible()) { visibleTarget = beacon.getName(); telemetry.addData(visibleTarget, "Visible"); } OpenGLMatrix robotLocationTransform = ((VuforiaTrackableDefaultListener) beacon.getListener()) .getUpdatedRobotLocation(); if (robotLocationTransform != null) { lastLocation = robotLocationTransform; } OpenGLMatrix pose = ((VuforiaTrackableDefaultListener) beacon.getListener()).getRawPose(); if (pose != null) { Matrix34F rawPose = new Matrix34F(); float[] poseData = Arrays.copyOfRange(pose.transposed().getData(), 0, 12); rawPose.setData(poseData); // Corners of beacon image in camera image Vec2F upperLeft = Tool.projectPoint(vuforia.getCameraCalibration(), rawPose, new Vec3F(-127, 92, 0)); Vec2F upperRight = Tool.projectPoint(vuforia.getCameraCalibration(), rawPose, new Vec3F(127, 92, 0)); Vec2F lowerLeft = Tool.projectPoint(vuforia.getCameraCalibration(), rawPose, new Vec3F(-127, -92, 0)); Vec2F lowerRight = Tool.projectPoint(vuforia.getCameraCalibration(), rawPose, new Vec3F(127, -92, 0)); VectorF translation = pose.getTranslation(); /** First argument is get(1) if phone is vertical First argument is get(0) if phone is horizontal */ // DOES NOT WORK??? degreesToTurn = Math.toDegrees(Math.atan2(translation.get(1), translation.get(2))); telemetry.addData("Degrees-", degreesToTurn); // TODO Check degreee turning threshold if (Math.abs(degreesToTurn) > 15) { // Turn after doing calculating transformations needToTurn = true; } if (img != null && !isButtonHit) { telemetry.addData(beacon.getName() + "-Translation", translation); telemetry.addData(beacon.getName() + "-Degrees", degreesToTurn); // Vectors are stored (y,x). Coordinate system starts in top right int height = (int) (lowerLeft.getData()[0] - upperLeft.getData()[0]); int width = (int) (upperLeft.getData()[1] - upperRight.getData()[1]); int rowStart = (int) upperRight.getData()[0] - height < 0 ? 0 : (int) upperRight.getData()[0] - height; int rowEnd = rowStart + height > img.rows() ? img.rows() - 1 : rowStart + height; int colStart = (int) upperRight.getData()[1] < 0 ? 0 : (int) upperRight.getData()[1]; int colEnd = colStart + width > img.cols() ? img.cols() - 1 : colStart + width; telemetry.addData("Target Location", ""); telemetry.addData("[" + upperLeft.getData()[0] + "," + upperLeft.getData()[1] + "]", "[" + upperRight.getData()[0] + "," + upperRight.getData()[1] + "]"); telemetry.addData("[" + lowerLeft.getData()[0] + "," + lowerLeft.getData()[1] + "]", "[" + lowerRight.getData()[0] + "," + lowerRight.getData()[1] + "]"); telemetry.addData(colStart + "", rowStart); telemetry.addData(colEnd + "", rowEnd); // Crop the image to look only at the beacon // TODO Verify beacon is in cropped image // NEED TO CHECK BEACON HEIGHT FOR INCLUSION IN CROPPED IMAGE croppedImg = img.submat(rowStart, rowEnd, colStart, colEnd); } } } // Process the rgb image if (croppedImg != null && !isButtonHit) { // Find the color of the beacon you need to hit if (hitRed) { colorDetector.setHsvColor(new Scalar(180, 240, 240)); // Red detector, needs verification with beacon } else { colorDetector.setHsvColor(new Scalar(25, 255, 185)); // Blue detector, needs verification with beacon } colorDetector.process(croppedImg); // Calculate the center of the blob detected Point beaconToHitCenter = null; List<Moments> blueMu = new ArrayList<>(colorDetector.getContours().size()); for (int i = 0; i < colorDetector.getContours().size(); i++) { blueMu.add(Imgproc.moments(colorDetector.getContours().get(i), false)); Moments p = blueMu.get(i); int x = (int) (p.get_m10() / p.get_m00()); int y = (int) (p.get_m01() / p.get_m00()); beaconToHitCenter = new Point(x, y); } // Find the color of the beacon you are not hitting if (hitRed) { colorDetector.setHsvColor(new Scalar(25, 255, 185)); // Blue detector, needs verification with beacon } else { colorDetector.setHsvColor(new Scalar(180, 240, 240)); // Red detector, needs verification with beacon } colorDetector.process(croppedImg); // Calculate the center of the blob detected Point secondReferenceCenter = null; List<Moments> redMu = new ArrayList<>(colorDetector.getContours().size()); for (int i = 0; i < colorDetector.getContours().size(); i++) { redMu.add(Imgproc.moments(colorDetector.getContours().get(i), false)); Moments p = redMu.get(i); int x = (int) (p.get_m10() / p.get_m00()); int y = (int) (p.get_m01() / p.get_m00()); secondReferenceCenter = new Point(x, y); } // Use the two centers of the blobs to determine which direction to hit if (beaconToHitCenter != null && secondReferenceCenter != null && !isButtonHit && !needToTurn) { // (!isButtonHit) Only hit the button once // (!needToTurn) Do not hit the button if the robot is not straight centered // hitBeaconButton(isLeft(center, beaconImageCenter)); if (isLeft(beaconToHitCenter, secondReferenceCenter)) { if (!directionToHit.equals("Left")) { directionFoundInARow = 0; } directionFoundInARow++; directionToHit = "Left"; } else { if (!directionToHit.equals("Right")) { directionFoundInARow = 0; } directionFoundInARow++; directionToHit = "Right"; } } // Find the color five times in a row before hitting it if (directionFoundInARow >= 3) { isButtonHit = true; } } if (isButtonHit) { telemetry.addData("Hit Button-", directionToHit); } // if(needToTurn) { // turn(degreesToTurn); // telemetry.addData("Turn-", degreesToTurn); // } /** * Provide feedback as to where the robot was last located (if we know). */ if (lastLocation != null) { // RobotLog.vv(TAG, "robot=%s", format(lastLocation)); telemetry.addData("Pos", myFormat(lastLocation)); if (!visibleTarget.equals("")) { telemetry.addData("Move", processLocation(lastLocation, visibleTarget)); } } else { telemetry.addData("Pos", "Unknown"); } telemetry.update(); idle(); } }
From source file:org.firstinspires.ftc.teamcode.VuforiaOp.java
public int getBeaconConfig(Image img, VuforiaTrackableDefaultListener beacon, CameraCalibration camCal) { OpenGLMatrix pose = beacon.getRawPose(); if (pose != null && img != null && img.getPixels() != null) { Matrix34F rawPose = new Matrix34F(); float[] poseData = Arrays.copyOfRange(pose.transposed().getData(), 0, 12); rawPose.setData(poseData);/*from www. jav a 2 s. co m*/ //calculating pixel coordinates of beacon corners float[][] corners = new float[4][2]; corners[0] = Tool.projectPoint(camCal, rawPose, new Vec3F(-127, 276, 0)).getData(); //upper left of beacon corners[1] = Tool.projectPoint(camCal, rawPose, new Vec3F(127, 276, 0)).getData(); //upper right of beacon corners[2] = Tool.projectPoint(camCal, rawPose, new Vec3F(127, 92, 0)).getData(); //lower right of beacon corners[3] = Tool.projectPoint(camCal, rawPose, new Vec3F(-127, 92, 0)).getData(); //lower left of beacon //getting camera image... Bitmap bm = Bitmap.createBitmap(img.getWidth(), img.getHeight(), Bitmap.Config.RGB_565); bm.copyPixelsFromBuffer(img.getPixels()); //turning the corner pixel coordinates into a proper bounding box Mat crop = OCVUtils.bitmapToMat(bm, CvType.CV_8UC3); float x = Math.min(Math.min(corners[1][0], corners[3][0]), Math.min(corners[0][0], corners[2][0])); float y = Math.min(Math.min(corners[1][1], corners[3][1]), Math.min(corners[0][1], corners[2][1])); float width = Math.max(Math.abs(corners[0][0] - corners[2][0]), Math.abs(corners[1][0] - corners[3][0])); float height = Math.max(Math.abs(corners[0][1] - corners[2][1]), Math.abs(corners[1][1] - corners[3][1])); //make sure our bounding box doesn't go outside of the image //OpenCV doesn't like that... x = Math.max(x, 0); y = Math.max(y, 0); width = (x + width > crop.cols()) ? crop.cols() - x : width; height = (y + height > crop.rows()) ? crop.rows() - y : height; //cropping bounding box out of camera image final Mat cropped = new Mat(crop, new Rect((int) x, (int) y, (int) width, (int) height)); Bitmap pic = OCVUtils.matToBitmap(cropped); //filtering out non-beacon-blue colours in HSV colour space Imgproc.cvtColor(cropped, cropped, Imgproc.COLOR_RGB2HSV_FULL); /*try { FileOutputStream out = new FileOutputStream(new File("/storage/emulated/0/", "poop.txt")); out.write((new String("ppoooop")).getBytes()); out.close(); } catch (FileNotFoundException e){} catch (IOException e){} */ /*try { FileOutputStream fos = new FileOutputStream(new File("/storage/emulated/0/", "cropped.png")); //bm.compress(Bitmap.CompressFormat.PNG, 90, fos); if (pic.compress(Bitmap.CompressFormat.PNG, 100, fos)) { } else { } fos.close(); }catch (IOException e) {} try { FileOutputStream fos = new FileOutputStream(new File("/storage/emulated/0/", "non.png")); //bm.compress(Bitmap.CompressFormat.PNG, 90, fos); if (bm.compress(Bitmap.CompressFormat.PNG, 100, fos)) { } else { tempLog("didgfeds"); } fos.close(); }catch (IOException e) {} */ //get filtered mask //if pixel is within acceptable blue-beacon-colour range, it's changed to white. //Otherwise, it's turned to black Mat mask = new Mat(); Core.inRange(cropped, BEACON_BLUE_LOW, BEACON_BLUE_HIGH, mask); Moments mmnts = Imgproc.moments(mask, true); //calculating centroid of the resulting binary mask via image moments Log.i("CentroidX", "" + ((mmnts.get_m10() / mmnts.get_m00()))); Log.i("CentroidY", "" + ((mmnts.get_m01() / mmnts.get_m00()))); //checking if blue either takes up the majority of the image (which means the beacon is all blue) //or if there's barely any blue in the image (which means the beacon is all red or off) // if (mmnts.get_m00() / mask.total() > 0.8) { // return VortexUtils.BEACON_ALL_BLUE; // } else if (mmnts.get_m00() / mask.total() < 0.1) { // return VortexUtils.BEACON_NO_BLUE; // }//elseif //Note: for some reason, we end up with a image that is rotated 90 degrees //if centroid is in the bottom half of the image, the blue beacon is on the left //if the centroid is in the top half, the blue beacon is on the right if ((mmnts.get_m01() / mmnts.get_m00()) < cropped.rows() / 2) { return VortexUtils.BEACON_RED_BLUE; } else { return VortexUtils.BEACON_BLUE_RED; } //else } //if return VortexUtils.NOT_VISIBLE; }
From source file:org.it.tdt.edu.vn.platedetection.process.LicensePlateDetection.java
License:Open Source License
public void executePreprocessor() { OriginalImage originalImage = new OriginalImage(imgUrl); BufferedImage bufferedImage = originalImage.getImageFromResourcesDirectory(); OriginalMat originalMat = new OriginalMat(bufferedImage); Mat mat = originalMat.createGrayImage(); showImageResult(mat, "nh gc"); long blackCount = 0; long whiteCount = 0; for (int i = 0; i < mat.rows(); i++) { for (int j = 0; j < mat.cols(); j++) { double temp[] = mat.get(i, j); if (temp[0] > 230) whiteCount++;//from w w w .j av a2s . c om else if (temp[0] < 35) blackCount++; } } int index = 0; for (int i = 0; i < mat.rows(); i += 16) { for (int j = 0; j < mat.cols(); j += 8) { Rect rect = new Rect(new Point(i, j), new Size(8, 16)); index++; System.out.println(rect.toString()); } } System.out.println(index); ThresholdMat thresholdMat = new ThresholdMat(mat, 0, 255, Imgproc.THRESH_OTSU); Mat mat1 = thresholdMat.createMatResult(); if (blackCount > whiteCount) { showImageResult(mat1, "nh ly ly ngng"); CloseMat openMat = new CloseMat(mat1, Imgproc.MORPH_RECT, 5, 5, 1); Mat mat2 = openMat.createMatResult(); showImageResult(mat2, "Thut ton open"); } else { } }
From source file:org.it.tdt.edu.vn.platedetection.process.LicensePlateDetection.java
License:Open Source License
public void licensePlateDetection() { OriginalImage originalImage = new OriginalImage(imgUrl); BufferedImage bufferedImage = originalImage.getImageFromResourcesDirectory(); OriginalMat originalMat = new OriginalMat(bufferedImage); // Step 1/*w w w .ja v a 2s . co m*/ Mat mat = originalMat.createGrayImage(); long blackCount = 0; long whiteCount = 0; for (int i = 0; i < mat.rows(); i++) { for (int j = 0; j < mat.cols(); j++) { double temp[] = mat.get(i, j); if (temp[0] > 230) whiteCount++; else if (temp[0] < 35) blackCount++; } } System.out.println("whiteCount: " + whiteCount); System.out.println("blackCount: " + blackCount); // ImageResult imageResult1 = new ImageResult(mat, // "GrayImage1"); // imageResult1.showResultImage(); // Step 2 BilateralFilteringMat bilateralFilteringMat = new BilateralFilteringMat(mat, 75, 75, 1); Mat mat2 = bilateralFilteringMat.createMatResult(); // ImageResult imageResult2 = new ImageResult(mat2, // "Gauss"); // imageResult2.showResultImage(); // Step 3 HistogramEqualizationMat histogramEqualizationMat = new HistogramEqualizationMat(mat2); Mat mat3 = histogramEqualizationMat.createMatResult(); // ImageResult imageResult3 = new ImageResult(mat3, // "HistogramEqualizationMat"); // imageResult3.showResultImage(); // Step 4 OpenMat openMat = new OpenMat(mat3, Imgproc.MORPH_RECT, 5, 5, 2.2); Mat mat4 = openMat.createMatResult(); // ImageResult imageResult4 = new ImageResult(mat4, // "OpenMat"); // imageResult4.showResultImage(); // Step 5 SubtractMat subtractMat = new SubtractMat(mat4, mat3); Mat mat5 = subtractMat.createMatResult(); // ImageResult imageResult5 = new ImageResult(mat5, // "SubtractMat"); // imageResult5.showResultImage(); // // Step 6 ThresholdMat thresholdMat = new ThresholdMat(mat5, 0, 255, Imgproc.THRESH_OTSU); // Mat mat6 = thresholdMat.createMatResult(); // ImageResult imageResult6 = new ImageResult(mat6, // "THRESH_OTSU"); // imageResult6.showResultImage(); // //Step 7 // CannyMat cannyMat = new CannyMat(mat6, 250, // 255); // // Mat mat7 = cannyMat.createMatResult(); // ImageResult imageResult7 = new ImageResult(mat7, // "GrayImage7"); // imageResult7.showResultImage(); // // //Step 8 // MorphologyMatBase morphologyMatBase = new MorphologyMatBase( // mat7, Imgproc.MORPH_RECT, 3, 3, 1); // Mat mat8 = morphologyMatBase.dilate(); // ImageResult imageResult8 = new ImageResult(mat8, // "GrayImage8"); // imageResult8.showResultImage(); // // //Step 9 // RectangleDetection rect = new RectangleDetection(mat8); // ImageResult imageResult = new // ImageResult(rect.executeRectangleDetection(), // "GrayImage9"); // imageResult.showResultImage(); }
From source file:org.it.tdt.edu.vn.platedetection.process.LicensePlateDetection.java
License:Open Source License
/** * I'am working here./* w ww .j a va 2 s . co m*/ * * @return */ public List<Mat> processImagePointBlackBiggerThanPointWhite() { OriginalImage originalImage = new OriginalImage(imgUrl); BufferedImage bufferedImage = originalImage.getImageFromResourcesDirectory(); OriginalMat originalMat = new OriginalMat(bufferedImage); // Step 1 Mat mat = originalMat.createGrayImage(); ThresholdMat thresholdMat = new ThresholdMat(mat.clone(), 0, 255, Imgproc.THRESH_OTSU); Mat threshold = thresholdMat.createMatResult(); MorphologyMatBase closeMat = new MorphologyMatBase(threshold, Imgproc.MORPH_RECT, 1, 1, 1); Mat close = closeMat.dilate(); RectangleDetection rectangleDetection = new RectangleDetection(close); List<MatOfPoint> contoursDetectPlate = rectangleDetection.executeRectangleDetection(); SubMat subMatDetectPlate = new SubMat(mat, contoursDetectPlate); // Get plate detected List<Mat> detectPlates = subMatDetectPlate.dropImage(); Mat matDetectPlate = detectPlates.get(5); ImageResult imageResult = new ImageResult(matDetectPlate, "Result "); imageResult.showResultImage(); // pre-process Mat matResult = new Mat(matDetectPlate.cols() * 2, matDetectPlate.rows() * 2, matDetectPlate.type()); Imgproc.resize(matDetectPlate, matResult, new Size(matDetectPlate.cols() * 1, matDetectPlate.rows() * 1)); ThresholdMat thresholdMatDetectPlate = new ThresholdMat(matResult, 0, 255, Imgproc.THRESH_OTSU); Mat thresholdMatDetectPlateMat = thresholdMatDetectPlate.createMatResult(); ImageResult imageResults = new ImageResult(thresholdMatDetectPlateMat, "Result "); imageResults.showResultImage(); CharacterSegment characterSegment = new CharacterSegment(thresholdMatDetectPlateMat.clone()); List<MatOfPoint> contoursNumber = characterSegment.executeCharacterSegment(); System.out.println(contoursNumber.size()); SubMat subMatNumberImg = new SubMat(thresholdMatDetectPlateMat.clone(), contoursNumber); List<Mat> listNumberImg = subMatNumberImg.dropImage(); return listNumberImg; }
From source file:org.it.tdt.edu.vn.platedetection.process.LicensePlateDetection.java
License:Open Source License
public Map<String, List<Mat>> processImagePointBlackBiggerThanPointWhiteTest() { OriginalImage originalImage = new OriginalImage(imgUrl); BufferedImage bufferedImage = originalImage.getImageFromResourcesDirectory(); OriginalMat originalMat = new OriginalMat(bufferedImage); // Step 1/*from w w w. j a va 2 s . co m*/ Mat mat = originalMat.createGrayImage(); ThresholdMat thresholdMat = new ThresholdMat(mat.clone(), 0, 255, Imgproc.THRESH_OTSU); Mat threshold = thresholdMat.createMatResult(); MorphologyMatBase closeMat = new MorphologyMatBase(threshold, Imgproc.MORPH_RECT, 1, 1, 1); Mat close = closeMat.dilate(); RectangleDetection rectangleDetection = new RectangleDetection(close); List<MatOfPoint> contoursDetectPlate = rectangleDetection.executeRectangleDetection(); SubMat subMatDetectPlate = new SubMat(mat, contoursDetectPlate); // Get plate detected List<Mat> detectPlates = subMatDetectPlate.dropImage(); Map<String, List<Mat>> mapNumberImg = new HashMap<String, List<Mat>>(); for (int i = 0; i < detectPlates.size(); i++) { // pre-process Mat matDetectPlate = detectPlates.get(i); Mat matResult = new Mat(matDetectPlate.cols() * 2, matDetectPlate.rows() * 2, matDetectPlate.type()); Imgproc.resize(matDetectPlate, matResult, new Size(matDetectPlate.cols() * 1, matDetectPlate.rows() * 1)); ThresholdMat thresholdMatDetectPlate = new ThresholdMat(matResult, 0, 255, Imgproc.THRESH_OTSU); Mat thresholdMatDetectPlateMat = thresholdMatDetectPlate.createMatResult(); CharacterSegment characterSegment = new CharacterSegment(thresholdMatDetectPlateMat.clone()); List<MatOfPoint> contoursNumber = characterSegment.executeCharacterSegment(); SubMat subMatNumberImg = new SubMat(thresholdMatDetectPlateMat.clone(), contoursNumber); mapNumberImg.put(String.valueOf(i), subMatNumberImg.dropImage()); } return mapNumberImg; }
From source file:org.lasarobotics.vision.detection.ObjectDetection.java
License:Open Source License
/** * Analyzes a scene for a target object. * * @param scene The scene to be analyzed as a GRAYSCALE matrix * @param analysis The target object's analysis from analyzeObject * @return A complete scene analysis/*from w w w .j ava 2 s . c om*/ */ public SceneAnalysis analyzeScene(Mat scene, ObjectAnalysis analysis) throws IllegalArgumentException { MatOfKeyPoint keypointsScene = new MatOfKeyPoint(); //DETECT KEYPOINTS in scene detector.detect(scene, keypointsScene); //EXTRACT KEYPOINT INFO from scene Mat descriptorsScene = new Mat(); extractor.compute(scene, keypointsScene, descriptorsScene); if (analysis == null) { throw new IllegalArgumentException("Analysis must not be null!"); } if (analysis.descriptors.cols() != descriptorsScene.cols() || analysis.descriptors.type() != descriptorsScene.type()) { throw new IllegalArgumentException("Object and scene descriptors do not match in cols() or type()."); } MatOfDMatch matches = new MatOfDMatch(); matcher.match(analysis.descriptors, descriptorsScene, matches); //FILTER KEYPOINTS /*double max_dist = 0, min_dist = 100; for(int i = 0; i < objectAnalysis.descriptors.rows(); i++) { double dist = matches.get; if(dist < ) }*/ //STORE SCENE ANALYSIS return new SceneAnalysis(keypointsScene, descriptorsScene, matches, scene); }