List of usage examples for java.util TreeMap put
public V put(K key, V value)
From source file:com.opengamma.analytics.financial.provider.sensitivity.multicurve.MultipleCurrencyMulticurveSensitivity.java
/** * Create a new multiple currency sensitivity by adding the sensitivity associated to a given currency. * If the currency is not yet present in the existing sensitivity a new map is created with the extra entry. * If the currency is already present, the associated sensitivities are added (in the sense of {@link InterestRateCurveSensitivity}) and a new map is created with all the other * existing entries and the entry with the currency and the sum sensitivity. * @param ccy The currency. Not null./*from w w w. ja va2 s . co m*/ * @param sensitivity The sensitivity associated to the currency. Not null. * @return The new multiple currency sensitivity. */ public MultipleCurrencyMulticurveSensitivity plus(final Currency ccy, final MulticurveSensitivity sensitivity) { ArgumentChecker.notNull(ccy, "Currency"); ArgumentChecker.notNull(sensitivity, "Sensitivity"); final TreeMap<Currency, MulticurveSensitivity> map = new TreeMap<>(); if (_sensitivity.containsKey(ccy)) { map.put(ccy, sensitivity.plus(_sensitivity.get(ccy))); for (final Currency loopccy : _sensitivity.keySet()) { if (loopccy != ccy) { map.put(loopccy, _sensitivity.get(loopccy)); } } } else { map.putAll(_sensitivity); map.put(ccy, sensitivity); } return new MultipleCurrencyMulticurveSensitivity(map); }
From source file:hivemall.anomaly.SingularSpectrumTransform.java
/** * Implicit Krylov Approximation (IKA) based naive scoring. * * Number of iterations for the Power method and QR method is fixed to 1 for efficiency. This * may cause failure (i.e. meaningless scores) depending on datasets and initial values. * *///from w ww .j av a2 s.c o m private double computeScoreIKA(@Nonnull final RealMatrix H, @Nonnull final RealMatrix G) { // assuming n = m = window, and keep track the left singular vector as `q` MatrixUtils.power1(G, q, 1, q, new double[window]); RealMatrix T = new Array2DRowRealMatrix(k, k); MatrixUtils.lanczosTridiagonalization(H.multiply(H.transpose()), q, T); double[] eigvals = new double[k]; RealMatrix eigvecs = new Array2DRowRealMatrix(k, k); MatrixUtils.tridiagonalEigen(T, 1, eigvals, eigvecs); // tridiagonalEigen() returns unordered eigenvalues, // so the top-r eigenvectors should be picked carefully TreeMap<Double, Integer> map = new TreeMap<Double, Integer>(Collections.reverseOrder()); for (int i = 0; i < k; i++) { map.put(eigvals[i], i); } Iterator<Integer> indices = map.values().iterator(); double s = 0.d; for (int i = 0; i < r; i++) { if (!indices.hasNext()) { throw new IllegalStateException("Should not happen"); } double v = eigvecs.getEntry(0, indices.next().intValue()); s += v * v; } return 1.d - Math.sqrt(s); }
From source file:org.powertac.genco.CpGencoTest.java
@Test public void configTest() { TreeMap<String, String> map = new TreeMap<String, String>(); map.put("genco.cpGenco.coefficients", "1.0, 2.0, 3.0"); map.put("genco.cpGenco.pSigma", "0.22"); init();/* www. jav a 2 s .c om*/ Configuration conf = new MapConfiguration(map); Configurator configurator = new Configurator(); configurator.setConfiguration(conf); configurator.configureSingleton(genco); assertEquals("3-element list", 3, genco.getCoefficients().size()); assertEquals("correct 1st", "1.0", genco.getCoefficients().get(0)); assertEquals("correct last", "3.0", genco.getCoefficients().get(2)); assertEquals("correct pSigma", 0.22, genco.getPSigma(), 1e-6); }
From source file:org.wso2.carbon.metrics.jdbc.reporter.JdbcReporterTest.java
private <T> SortedMap<String, T> map(String name, T metric) { final TreeMap<String, T> map = new TreeMap<>(); map.put(name, metric); return map;/* w ww . java 2 s . co m*/ }
From source file:com.opengamma.analytics.financial.provider.sensitivity.multicurve.MultipleCurrencyMulticurveSensitivity.java
/** * Create a new multiple currency sensitivity by multiplying all the sensitivities in a multiple currency sensitivity by a common factor. * @param factor The multiplicative factor. * @return The new multiple currency sensitivity. *//*w w w.j av a2 s. c om*/ public MultipleCurrencyMulticurveSensitivity multipliedBy(final double factor) { final TreeMap<Currency, MulticurveSensitivity> map = new TreeMap<>(); for (final Currency loopccy : _sensitivity.keySet()) { map.put(loopccy, _sensitivity.get(loopccy).multipliedBy(factor)); } return new MultipleCurrencyMulticurveSensitivity(map); }
From source file:io.mapzone.arena.analytics.graph.ui.FeaturePropertySelectorUI.java
private void fill() { if (combo != null && !combo.isDisposed() && featureSource != null) { final Collection<PropertyDescriptor> schemaDescriptors = featureSource.getSchema().getDescriptors(); final GeometryDescriptor geometryDescriptor = featureSource.getSchema().getGeometryDescriptor(); final TreeMap<String, PropertyDescriptor> properties = Maps.newTreeMap(); for (PropertyDescriptor descriptor : schemaDescriptors) { if (geometryDescriptor == null || !geometryDescriptor.equals(descriptor)) { properties.put(descriptor.getName().getLocalPart(), descriptor); }//from w ww . j av a 2s.co m } final List<String> columns = Lists.newArrayList(); columns.addAll(properties.keySet()); combo.setItems(columns.toArray(new String[properties.size()])); combo.addSelectionListener(new SelectionAdapter() { @Override public void widgetSelected(SelectionEvent e) { onSelect.accept(properties.get(columns.get(combo.getSelectionIndex()))); } }); combo.getParent().layout(); } }
From source file:com.opengamma.analytics.financial.provider.sensitivity.multicurve.MultipleCurrencyMulticurveSensitivity.java
/** * Returns a new multiple currency sensitivity by creating clean sensitivity for each currency (see {@link InterestRateCurveSensitivity} clean() method). * @return The cleaned sensitivity./* w ww . j a v a2 s . c om*/ */ public MultipleCurrencyMulticurveSensitivity cleaned() { final TreeMap<Currency, MulticurveSensitivity> map = new TreeMap<>(); for (final Currency loopccy : _sensitivity.keySet()) { map.put(loopccy, _sensitivity.get(loopccy).cleaned()); } final MultipleCurrencyMulticurveSensitivity result = new MultipleCurrencyMulticurveSensitivity(map); return result; }
From source file:com.opengamma.analytics.financial.provider.sensitivity.multicurve.MultipleCurrencyMulticurveSensitivity.java
/** * Returns a new multiple currency sensitivity by creating clean sensitivity for each currency (see {@link InterestRateCurveSensitivity} clean() method). * The total value below the tolerance threshold are removed. * @param tolerance The tolerance.// w w w. j av a 2s.co m * @return The cleaned sensitivity. */ public MultipleCurrencyMulticurveSensitivity cleaned(final double tolerance) { final TreeMap<Currency, MulticurveSensitivity> map = new TreeMap<>(); for (final Currency loopccy : _sensitivity.keySet()) { map.put(loopccy, _sensitivity.get(loopccy).cleaned(tolerance)); } final MultipleCurrencyMulticurveSensitivity result = new MultipleCurrencyMulticurveSensitivity(map); return result; }
From source file:herbie.running.analysis.CalcLegTimesKTI.java
public TreeMap<String, Double> getAverageTripDurationsByMode() { TreeMap<String, Double> averageTripDurations = new TreeMap<String, Double>(); for (String mode : this.rawData.keySet()) { averageTripDurations.put(mode, StatUtils.mean(this.rawData.get(mode).getElements())); }/*from w w w . j a v a 2s.co m*/ return averageTripDurations; }
From source file:net.oremland.rss.reader.fragments.BaseListFragment.java
private TreeMap<String, TModel> getModelMap(List<TModel> models) { TreeMap<String, TModel> map = this.createTreeMap(); for (TModel model : models) { map.put(model.getKey(), model); }/*from ww w. j a va2s. c om*/ return map; }