List of usage examples for java.lang System identityHashCode
@HotSpotIntrinsicCandidate public static native int identityHashCode(Object x);
From source file:org.apache.solr.core.CoreContainer.java
@Override protected void finalize() throws Throwable { try {// w ww. j a va2s . co m if (!isShutDown) { log.error( "CoreContainer was not shutdown prior to finalize(), indicates a bug -- POSSIBLE RESOURCE LEAK!!! instance=" + System.identityHashCode(this)); shutdown(); } } finally { super.finalize(); } }
From source file:org.apache.kylin.dict.DictionaryManager.java
DictionaryInfo load(String resourcePath, boolean loadDictObj) throws IOException { ResourceStore store = MetadataManager.getInstance(config).getStore(); logger.info("DictionaryManager(" + System.identityHashCode(this) + ") loading DictionaryInfo(loadDictObj:" + loadDictObj + ") at " + resourcePath); DictionaryInfo info = store.getResource(resourcePath, DictionaryInfo.class, loadDictObj ? DictionaryInfoSerializer.FULL_SERIALIZER : DictionaryInfoSerializer.INFO_SERIALIZER); return info;//from w w w . ja va 2s . c om }
From source file:org.jabsorb.ng.JSONRPCBridge.java
/** * Adds a reference to the map of known references * /*from w w w.j a v a 2 s . c om*/ * @param o * The object to be added */ public void addReference(final Object o) { synchronized (referenceMap) { referenceMap.put(new Integer(System.identityHashCode(o)), o); } }
From source file:org.pentaho.reporting.engine.classic.core.layout.process.alignment.AbstractAlignmentProcessor.java
protected void computeInlineBlock(final RenderBox box, final long position, final long itemElementWidth) { final StaticBoxLayoutProperties blp = box.getStaticBoxLayoutProperties(); box.setCachedX(position + blp.getMarginLeft()); final long width = itemElementWidth - blp.getMarginLeft() - blp.getMarginRight(); if (width == 0) { // ModelPrinter.printParents(box); throw new IllegalStateException("A box without any width? " + Integer.toHexString(System.identityHashCode(box)) + ' ' + box.getClass()); }/* www . j a v a 2s . co m*/ box.setCachedWidth(width); final BoxDefinition bdef = box.getBoxDefinition(); final long leftInsets = bdef.getPaddingLeft() + blp.getBorderLeft(); final long rightInsets = bdef.getPaddingRight() + blp.getBorderRight(); box.setContentAreaX1(box.getCachedX() + leftInsets); box.setContentAreaX2(box.getCachedX() + box.getCachedWidth() - rightInsets); // final InfiniteMinorAxisLayoutStep layoutStep = new InfiniteMinorAxisLayoutStep(metaData); // layoutStep.continueComputation(getPageGrid(), box); }
From source file:org.jbpm.taskmgmt.exe.TaskInstance.java
public String toString() { return "TaskInstance" + (name != null ? "[" + name + "]" : Integer.toHexString(System.identityHashCode(this))); }
From source file:IdentityMap.java
/** * {@inheritDoc}// w w w. j av a 2 s . co m * @see java.util.Collection#contains(java.lang.Object) */ public boolean contains(final Object key) { int hash = System.identityHashCode(key); int index = hash % _capacity; if (index < 0) { index = -index; } Entry entry = _buckets[index]; while (entry != null) { if (entry.getKey() == key) { return true; } entry = entry.getNext(); } return false; }
From source file:IdentityHashMap.java
/** * Returns a collection view of the mappings contained in this map. Each * element in the returned collection is a <tt>Map.Entry</tt>. The * collection is backed by the map, so changes to the map are reflected in * the collection, and vice-versa. The collection supports element * removal, which removes the corresponding mapping from the map, via the * <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>, * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> operations. * It does not support the <tt>add</tt> or <tt>addAll</tt> operations. * * @return a collection view of the mappings contained in this map. * @see Map.Entry//from ww w. j a v a 2s . c om */ public Set entrySet() { if (entrySet == null) { entrySet = new AbstractSet() { public Iterator iterator() { return getHashIterator(ENTRIES); } public boolean contains(Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry entry = (Map.Entry) o; Object key = entry.getKey(); Entry tab[] = table; // int hash = (key==null ? 0 : key.hashCode()); int hash = (key == null ? 0 : System.identityHashCode(key)); int index = (hash & 0x7FFFFFFF) % tab.length; for (Entry e = tab[index]; e != null; e = e.next) if (e.hash == hash && e.equals(entry)) return true; return false; } public boolean remove(Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry entry = (Map.Entry) o; Object key = entry.getKey(); Entry tab[] = table; // int hash = (key==null ? 0 : key.hashCode()); int hash = (key == null ? 0 : System.identityHashCode(key)); int index = (hash & 0x7FFFFFFF) % tab.length; for (Entry e = tab[index], prev = null; e != null; prev = e, e = e.next) { if (e.hash == hash && e.equals(entry)) { modCount++; if (prev != null) prev.next = e.next; else tab[index] = e.next; count--; e.value = null; return true; } } return false; } public int size() { return count; } public void clear() { IdentityHashMap.this.clear(); } }; } return entrySet; }
From source file:edu.oregonstate.eecs.mcplan.domains.blackjack.AbstractionDiscovery.java
private static <X extends FactoredRepresentation<BlackjackState>, R extends Representer<BlackjackState, X>> void runExperiment( final BlackjackParameters params, final int Niterations, final int Ntrain_games, final int Ntrain_episodes, final int Ntest_games, final int Ntest_episodes, final File root) throws Exception { final BlackjackAggregator repr = new BlackjackAggregator(); final BlackjackMdp mdp = new BlackjackMdp(params); System.out.println("Solving MDP"); final Pair<String[][], String[][]> soln = mdp.solve(); final String[][] hard_actions = soln.first; final String[][] soft_actions = soln.second; System.out.println("****************************************"); System.out.println("game = " + params.max_score + " x (" + Ntrain_games + "(" + Ntrain_episodes + ")" + " / " + Ntest_games + "(" + Ntest_episodes + ")) " + ": " + repr); final Csv.Writer data_out = new Csv.Writer(new PrintStream(new File(root, "data.csv"))); data_out.cell("abstraction").cell("game").cell("iteration").cell("Ntrain_games").cell("Ntrain_episodes") .cell("Ntest_games").cell("Ntest_episodes").cell("mean").cell("var").cell("conf").newline(); final ActionGenerator<BlackjackState, JointAction<BlackjackAction>> action_gen = new BlackjackJointActionGenerator( 1);/* w ww . j a v a 2s . co m*/ final Policy<BlackjackState, JointAction<BlackjackAction>> rollout_policy = new RandomPolicy<BlackjackState, JointAction<BlackjackAction>>( 0 /*Player*/, rng.nextInt(), action_gen.create()); final double c = 1.0; final int rollout_width = 1; final int rollout_depth = 1; // Optimistic default value final double[] default_value = new double[] { 1.0 }; Representer<BlackjackState, ClusterAbstraction<BlackjackState>> Crepr = new TrivialClusterRepresenter( params, mdp.S()); // NOTE: In the Blackjack domain, we can easily enumerate all // legal states, so I'm punting the issue of how to collect them // properly during search. In reality, there's a question of // whether we should be weighting them, e.g. by their reachability. final ArrayList<RealVector> Phi = enumerateStates(params); RealMatrix A0 = MatrixUtils.createRealIdentityMatrix(Phi.get(0).getDimension()); for (int iter = 0; iter < Niterations; ++iter) { System.out.println("Iteration " + iter); // final UnlabeledStateAccumulator<ClusterAbstraction<BlackjackState>> train_visitor // = new UnlabeledStateAccumulator<ClusterAbstraction<BlackjackState>>( Crepr.create() ); final MctsVisitor<BlackjackState, ClusterAbstraction<BlackjackState>, BlackjackAction> train_visitor = new DefaultMctsVisitor<BlackjackState, ClusterAbstraction<BlackjackState>, BlackjackAction>(); final BackupRule<ClusterAbstraction<BlackjackState>, BlackjackAction> train_backup = BackupRule .<ClusterAbstraction<BlackjackState>, BlackjackAction>MaxQ(); // Gather training examples System.out.println("Gathering training examples..."); final SolvedStateAccumulator<HandValueAbstraction> acc = new SolvedStateAccumulator<HandValueAbstraction>( repr); for (int i = 0; i < Ntrain_games; ++i) { if (i % 100000 == 0) { System.out.println("Episode " + i); } final Deck deck = new InfiniteDeck(); final BlackjackSimulator sim = new BlackjackSimulator(deck, 1, params); final GameTreeFactory<BlackjackState, ClusterAbstraction<BlackjackState>, BlackjackAction> factory = new UctSearch.Factory<BlackjackState, ClusterAbstraction<BlackjackState>, BlackjackAction>( sim, Crepr.create(), action_gen.create(), c, Ntrain_episodes, rng, rollout_policy, rollout_width, rollout_depth, train_backup, default_value); final SearchPolicy<BlackjackState, ClusterAbstraction<BlackjackState>, BlackjackAction> search_policy = new SearchPolicy<BlackjackState, ClusterAbstraction<BlackjackState>, BlackjackAction>( factory, train_visitor, null) { @Override protected JointAction<BlackjackAction> selectAction( final GameTree<ClusterAbstraction<BlackjackState>, BlackjackAction> tree) { return BackupRules.MaxAction(tree.root()).a(); } @Override public int hashCode() { return System.identityHashCode(this); } @Override public boolean equals(final Object that) { return this == that; } }; final Episode<BlackjackState, BlackjackAction> episode = new Episode<BlackjackState, BlackjackAction>( sim, search_policy); episode.addListener(acc); episode.run(); } // Train classifier System.out.println("Training classifier..."); final String algorithm = "kmeans"; //"rf"; final boolean with_metric_learning = true; if ("kmeans".equals(algorithm)) { // final ArrayList<RealVector> Phi = train_visitor.Phi_; final MetricConstrainedKMeans kmeans = makeClustering(rng, A0, acc.Phi_, acc.actions_, Phi, with_metric_learning); final VoronoiClassifier classifier = new VoronoiClassifier(kmeans.mu()) { @Override protected double distance(final RealVector x1, final RealVector x2) { return kmeans.distance(x1, x2); } }; // Update reference matrix. This has the effect of keeping some of // the information from previous training episodes. A0 = kmeans.metric.copy(); writeClustering(kmeans, root, iter, params, hard_actions, soft_actions); Crepr = new ClusterRepresenter(classifier, repr.create()); } else if ("rf".equals(algorithm)) { final Instances train = makeTrainingSet(acc, HandValueAbstraction.makeAttributes(params), iter); writeDataset(root, train); final Classifier classifier = makeClassifier(train); SerializationHelper.write(new File(root, "rf" + iter + ".model").getAbsolutePath(), classifier); Crepr = new PairwiseSimilarityRepresenter<BlackjackState, HandValueAbstraction>(repr.create(), new Instances(train), classifier); } // Test System.out.println("Testing..."); final MctsVisitor<BlackjackState, ClusterAbstraction<BlackjackState>, BlackjackAction> test_visitor = new DefaultMctsVisitor<BlackjackState, ClusterAbstraction<BlackjackState>, BlackjackAction>(); final BackupRule<ClusterAbstraction<BlackjackState>, BlackjackAction> test_backup = BackupRule .<ClusterAbstraction<BlackjackState>, BlackjackAction>MaxQ(); final MeanVarianceAccumulator ret = new MeanVarianceAccumulator(); for (int i = 0; i < Ntest_games; ++i) { if (i % 10000 == 0) { System.out.println("Episode " + i); } final Deck deck = new InfiniteDeck(); final BlackjackSimulator sim = new BlackjackSimulator(deck, 1, params); final GameTreeFactory<BlackjackState, ClusterAbstraction<BlackjackState>, BlackjackAction> factory = new UctSearch.Factory<BlackjackState, ClusterAbstraction<BlackjackState>, BlackjackAction>( sim, Crepr.create(), action_gen.create(), c, Ntest_episodes, rng, rollout_policy, rollout_width, rollout_depth, test_backup, default_value); final SearchPolicy<BlackjackState, ClusterAbstraction<BlackjackState>, BlackjackAction> search_policy = new SearchPolicy<BlackjackState, ClusterAbstraction<BlackjackState>, BlackjackAction>( factory, test_visitor, null) { @Override protected JointAction<BlackjackAction> selectAction( final GameTree<ClusterAbstraction<BlackjackState>, BlackjackAction> tree) { return BackupRules.MaxAction(tree.root()).a(); } @Override public int hashCode() { return System.identityHashCode(this); } @Override public boolean equals(final Object that) { return this == that; } }; final Episode<BlackjackState, BlackjackAction> episode = new Episode<BlackjackState, BlackjackAction>( sim, search_policy); episode.run(); // System.out.println( sim.state().token().toString() ); // System.out.println( "Reward: " + sim.reward()[0] ); ret.add(sim.reward()[0]); } System.out.println("****************************************"); System.out.println("Average return: " + ret.mean()); System.out.println("Return variance: " + ret.variance()); final double conf = 0.975 * ret.variance() / Math.sqrt(Ntest_games); System.out.println("Confidence: " + conf); System.out.println(); // data_out.println( "abstraction,game,iterations,Ntrain_games,Ntrain_episodes,Ntest_games,Ntest_episodes,mean,var,conf" ); data_out.cell(repr).cell(params.max_score).cell(iter).cell(Ntrain_games).cell(Ntrain_episodes) .cell(Ntest_games).cell(Ntest_episodes).cell(ret.mean()).cell(ret.variance()).cell(conf) .newline(); } }
From source file:er.extensions.components.javascript.ERXJSPopUpRelationPicker.java
public String objectArrayCreationString() { // here's an example of the string this method should return: //var parentschildren = new Array(new Entity("dogs","1",new Array(new Entity("poodle","4",null,false),new Entity("puli","5",null,true),new Entity("greyhound","5",null,false)),false), new Entity("fish","2",new Array(new Entity("trout","6",null,true),new Entity("mackerel","7",null,false),new Entity("bass","8",null,false)),true), new Entity("birds","3",new Array(new Entity("robin","9",null,false),new Entity("hummingbird","10",null,false),new Entity("crow","11",null,true)),false)); StringBuilder returnString = new StringBuilder(1000); returnString.append("var "); returnString.append(objectsArrayName); returnString.append(" = ["); int iCount = parentEntitiesList().count(); for (int i = 0; i < iCount; i++) { Object aParent = parentEntitiesList().objectAtIndex(i); returnString.append("\n\tnew Entity("); returnString.append(" \"" + NSKeyValueCodingAdditions.Utility.valueForKeyPath(aParent, parentDisplayValueName()) + "\","); returnString.append(" \"" + idForParent(aParent) + "\","); returnString.append(" \"" + System.identityHashCode(aParent) + "\","); // now do all the possible children of the parent. Each child should look like 'new Entity("poodle","4",null,false)' returnString.append(" ["); NSArray childrenOfAParent = sortedChildren(aParent); int jCount = childrenOfAParent.count(); Object defaultChild = defaultChildKey() != null ? NSKeyValueCodingAdditions.Utility.valueForKeyPath(aParent, defaultChildKey()) : null;/*from w w w. j a v a 2 s.c o m*/ int defaultChildIndex = -1; for (int j = 0; j < jCount; j++) { Object aChild = childrenOfAParent.objectAtIndex(j); returnString.append("\n\t\t new Entity("); returnString.append( " \"" + NSKeyValueCodingAdditions.Utility.valueForKeyPath(aChild, childDisplayValueName()) + "\","); // visible text of pop-up returnString.append(" \"" + idForChild(aParent, aChild) + "\","); // value text of pop-up returnString.append(" \"" + System.identityHashCode(aChild) + "\","); returnString.append(" null,"); if (isSelectedChild(aChild)) { returnString.append(" true"); } else { returnString.append(" false"); } returnString.append(", null"); returnString.append(')'); if (j != jCount - 1) { // append a comma and a space returnString.append(", "); } if (aChild == defaultChild) defaultChildIndex = j; } returnString.append("],"); if (isSelectedParent(aParent)) { // in the single case, the parent will be updated when we call parent changed returnString.append(" true"); } else { returnString.append(" false"); } returnString.append(", "); returnString.append(defaultChild != null ? "\"" + defaultChildIndex + "\"" : "-1"); returnString.append(')'); if (i != iCount - 1) { // append a comma and a space returnString.append(", "); } } returnString.append("];"); return returnString.toString(); }
From source file:org.apache.hadoop.net.unix.DomainSocketWatcher.java
public String toString() { return "DomainSocketWatcher(" + System.identityHashCode(this) + ")"; }