List of usage examples for java.lang Math E
double E
To view the source code for java.lang Math E.
Click Source Link
From source file:FILA.Produtor.java
private double Poisson(double y, int x) { return Math.pow(Math.E, -y) * Math.pow(y, x) / Fatorial(x); }
From source file:org.apache.flink.api.java.sampling.PoissonSampler.java
/** * Sample the input elements, for each input element, generate its count following a poisson * distribution./*from w w w .j av a2 s. c o m*/ * * @param input Elements to be sampled. * @return The sampled result which is lazy computed upon input elements. */ @Override public Iterator<T> sample(final Iterator<T> input) { if (fraction == 0) { return EMPTY_ITERABLE; } return new SampledIterator<T>() { T currentElement; int currentCount = 0; @Override public boolean hasNext() { if (currentCount > 0) { return true; } else { samplingProcess(); if (currentCount > 0) { return true; } else { return false; } } } @Override public T next() { if (currentCount <= 0) { samplingProcess(); } currentCount--; return currentElement; } public int poisson_ge1(double p) { // sample 'k' from Poisson(p), conditioned to k >= 1. double q = Math.pow(Math.E, -p); // simulate a poisson trial such that k >= 1. double t = q + (1 - q) * random.nextDouble(); int k = 1; // continue standard poisson generation trials. t = t * random.nextDouble(); while (t > q) { k++; t = t * random.nextDouble(); } return k; } private void skipGapElements(int num) { // skip the elements that occurrence number is zero. int elementCount = 0; while (input.hasNext() && elementCount < num) { currentElement = input.next(); elementCount++; } } private void samplingProcess() { if (fraction <= THRESHOLD) { double u = Math.max(random.nextDouble(), EPSILON); int gap = (int) (Math.log(u) / -fraction); skipGapElements(gap); if (input.hasNext()) { currentElement = input.next(); currentCount = poisson_ge1(fraction); } } else { while (input.hasNext()) { currentElement = input.next(); currentCount = poissonDistribution.sample(); if (currentCount > 0) { break; } } } } }; }
From source file:org.canova.api.util.MathUtils.java
/** * 1 / 1 + exp(-x)/* ww w. jav a 2 s . co m*/ * * @param x * @return */ public static double sigmoid(double x) { return 1.0 / (1.0 + Math.pow(Math.E, -x)); }
From source file:edu.utexas.cs.tactex.subscriptionspredictors.LWRCustOldAppache.java
/** * LWR prediction/*from www . j a v a 2 s . c om*/ * * @param X * @param Y * @param x0 * @param tau * @return */ public Double LWRPredict(ArrayRealVector X, ArrayRealVector Y, double x0, final double tau) { ArrayRealVector X0 = new ArrayRealVector(X.getDimension(), x0); ArrayRealVector delta = X.subtract(X0); ArrayRealVector sqDists = delta.ebeMultiply(delta); UnivariateFunction expTau = new UnivariateFunction() { @Override public double value(double arg0) { //log.info(" cp univariate tau " + tau); return Math.pow(Math.E, -arg0 / (2 * tau)); } }; ArrayRealVector W = sqDists.map(expTau); double Xt_W_X = X.dotProduct(W.ebeMultiply(X)); if (Xt_W_X == 0.0) { log.error(" cp LWR cannot predict - 0 denominator returning NULL"); log.error("Xcv is " + X.toString()); log.error("Ycv is " + Y.toString()); log.error("x0 is " + x0); return null; // <==== NOTE: a caller must be prepared for it } double theta = (1.0 / Xt_W_X) * X.ebeMultiply(W).dotProduct(Y); return theta * x0; }
From source file:edu.cuny.qc.speech.AuToBI.core.Aggregation.java
/** * Treating this aggregation as a Gaussian probability distribution function, evaluates the probability that a value * generated was generated by this aggregation. * * @param value the value to evaluate/*from w ww . jav a 2 s . c om*/ * @return the gaussian PDF evaluated at value */ public double evaluateGaussianPDF(double value) { double mean = getMean(); double stdev = getStdev(); double pdf = 1 / (stdev * Math.sqrt(2 * Math.PI)); pdf *= Math.pow(Math.E, (-(value - mean) * (value - mean)) / (2 * stdev * stdev)); return pdf; }
From source file:org.rm3l.ddwrt.tiles.status.bandwidth.BandwidthMonitoringTile.java
public void fillIfaceDataPoint(@NotNull final String iface) { if (DDWRTCompanionConstants.TEST_MODE || BW_MONIT_TEST) { //FIXME TEST MODE final double random = new Random().nextDouble() * 1024; bandwidthMonitoringIfaceData.addData(iface, new DataPoint(System.currentTimeMillis(), random * Math.sqrt(random * Math.E))); }/* w w w . j a v a2 s .c o m*/ //FIXME Add real data down this line }
From source file:org.apache.cassandra.gms.FailureDetector.java
double p(double t) { double mean = mean(); double exponent = (-1) * (t) / mean; return Math.pow(Math.E, exponent); }
From source file:it.unimi.dsi.sux4j.mph.PaCoTrieDistributorMonotoneMinimalPerfectHashFunction.java
/** Creates a new PaCo-trie-based monotone minimal perfect hash function using the given * elements and transformation strategy. * /* w ww. j ava2s.co m*/ * @param elements the elements among which the trie must be able to rank. * @param transform a transformation strategy that must turn the elements in <code>elements</code> into a list of * distinct, prefix-free, lexicographically increasing (in iteration order) bit vectors. */ public PaCoTrieDistributorMonotoneMinimalPerfectHashFunction(final Iterable<? extends T> elements, final TransformationStrategy<? super T> transform) throws IOException { this.transform = transform; defRetValue = -1; // For the very few cases in which we can decide long maxLength = 0; long totalLength = 0; BitVector bv; final RandomGenerator random = new XorShift1024StarRandomGenerator(); ProgressLogger pl = new ProgressLogger(LOGGER); pl.displayLocalSpeed = true; pl.displayFreeMemory = true; pl.itemsName = "keys"; pl.start("Creating chunked hash store..."); final ChunkedHashStore<BitVector> chunkedHashStore = new ChunkedHashStore<BitVector>( TransformationStrategies.identity()); chunkedHashStore.reset(random.nextLong()); for (T s : elements) { bv = transform.toBitVector(s); chunkedHashStore.add(bv); maxLength = Math.max(maxLength, bv.length()); totalLength += bv.length(); pl.lightUpdate(); } pl.done(); LOGGER.debug("Maximum length: " + maxLength); LOGGER.debug("Average length: " + totalLength / (double) chunkedHashStore.size()); size = chunkedHashStore.size(); if (size == 0) { bucketSize = log2BucketSize = 0; distributor = null; offset = null; chunkedHashStore.close(); return; } final long averageLength = (totalLength + size - 1) / size; int t = Fast.mostSignificantBit( (int) Math.floor(averageLength - Math.log(size) - Math.log(averageLength - Math.log(size)) - 1)); final int firstbucketSize = 1 << t; LOGGER.debug("First bucket size estimate: " + firstbucketSize); final Iterable<BitVector> bitVectors = TransformationStrategies.wrap(elements, transform); LOGGER.info("Creating distributor..."); PaCoTrieDistributor<BitVector> firstDistributor = new PaCoTrieDistributor<BitVector>(bitVectors, t, TransformationStrategies.identity()); if (firstDistributor.numBits() == 0 || firstbucketSize >= size) log2BucketSize = t; else { // Reassign bucket size based on empirical estimation log2BucketSize = t - Fast.mostSignificantBit((int) Math.ceil(size / (firstDistributor.numBits() * Math.log(2)))); } bucketSize = 1 << log2BucketSize; LOGGER.debug("Second bucket size estimate: " + bucketSize); if (firstbucketSize == bucketSize) distributor = firstDistributor; else { firstDistributor = null; distributor = new PaCoTrieDistributor<BitVector>(bitVectors, log2BucketSize, TransformationStrategies.identity()); } LOGGER.debug("Bucket size: " + bucketSize); final int bucketSizeMask = bucketSize - 1; LOGGER.info("Generating offset function..."); offset = new GOV3Function.Builder<BitVector>().keys(bitVectors) .transform(TransformationStrategies.identity()).store(chunkedHashStore) .values(new AbstractLongBigList() { public long getLong(long index) { return index & bucketSizeMask; } public long size64() { return size; } }, log2BucketSize).indirect().build(); chunkedHashStore.close(); LOGGER.debug("Forecast distributor bit cost: " + (size / bucketSize) * (maxLength + log2BucketSize - Math.log(size))); LOGGER.debug("Actual distributor bit cost: " + distributor.numBits()); LOGGER.debug("Forecast bit cost per element: " + (GOV3Function.C + Fast.log2(Math.E) - Fast.log2(Fast.log2(Math.E)) + Fast.log2(maxLength - Fast.log2(size)))); LOGGER.info("Actual bit cost per element: " + (double) numBits() / size); }
From source file:com.bigdata.dastor.gms.FailureDetector.java
double p(double t) { double mean = mean(); double exponent = (-1) * (t) / mean; return 1 - (1 - Math.pow(Math.E, exponent)); }
From source file:es.udc.gii.common.eaf.benchmark.real_param.cec2005.CEC2005ObjectiveFunction.java
public double ackley(double[] x) { double s1 = 0.0d; double s2 = 0.0d; for (int i = 0; i < x.length; i++) { s1 += x[i] * x[i];/* w w w .j ava2s . c o m*/ s2 += Math.cos(2 * Math.PI * x[i]); } return -20 * Math.exp(-0.2 * Math.sqrt(1.0 / x.length * s1)) - Math.exp(1.0 / x.length * s2) + 20 + Math.E; }