Java tutorial
/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.flink.api.java.sampling; import org.apache.commons.math3.distribution.PoissonDistribution; import org.apache.flink.annotation.Internal; import org.apache.flink.util.Preconditions; import org.apache.flink.util.XORShiftRandom; import java.util.Iterator; import java.util.Random; /** * A sampler implementation based on the Poisson Distribution. While sampling elements with fraction * and replacement, the selected number of each element follows a given poisson distribution. * * @param <T> The type of sample. * @see <a href="https://en.wikipedia.org/wiki/Poisson_distribution">https://en.wikipedia.org/wiki/Poisson_distribution</a> * @see <a href="http://erikerlandson.github.io/blog/2014/09/11/faster-random-samples-with-gap-sampling/">Gap Sampling</a> */ @Internal public class PoissonSampler<T> extends RandomSampler<T> { private PoissonDistribution poissonDistribution; private final double fraction; private final Random random; // THRESHOLD is a tuning parameter for choosing sampling method according to the fraction. private final static double THRESHOLD = 0.4; /** * Create a poisson sampler which can sample elements with replacement. * * @param fraction The expected count of each element. * @param seed Random number generator seed for internal PoissonDistribution. */ public PoissonSampler(double fraction, long seed) { Preconditions.checkArgument(fraction >= 0, "fraction should be positive."); this.fraction = fraction; if (this.fraction > 0) { this.poissonDistribution = new PoissonDistribution(fraction); this.poissonDistribution.reseedRandomGenerator(seed); } this.random = new XORShiftRandom(seed); } /** * Create a poisson sampler which can sample elements with replacement. * * @param fraction The expected count of each element. */ public PoissonSampler(double fraction) { Preconditions.checkArgument(fraction >= 0, "fraction should be non-negative."); this.fraction = fraction; if (this.fraction > 0) { this.poissonDistribution = new PoissonDistribution(fraction); } this.random = new XORShiftRandom(); } /** * Sample the input elements, for each input element, generate its count following a poisson * distribution. * * @param input Elements to be sampled. * @return The sampled result which is lazy computed upon input elements. */ @Override public Iterator<T> sample(final Iterator<T> input) { if (fraction == 0) { return EMPTY_ITERABLE; } return new SampledIterator<T>() { T currentElement; int currentCount = 0; @Override public boolean hasNext() { if (currentCount > 0) { return true; } else { samplingProcess(); if (currentCount > 0) { return true; } else { return false; } } } @Override public T next() { if (currentCount <= 0) { samplingProcess(); } currentCount--; return currentElement; } public int poisson_ge1(double p) { // sample 'k' from Poisson(p), conditioned to k >= 1. double q = Math.pow(Math.E, -p); // simulate a poisson trial such that k >= 1. double t = q + (1 - q) * random.nextDouble(); int k = 1; // continue standard poisson generation trials. t = t * random.nextDouble(); while (t > q) { k++; t = t * random.nextDouble(); } return k; } private void skipGapElements(int num) { // skip the elements that occurrence number is zero. int elementCount = 0; while (input.hasNext() && elementCount < num) { currentElement = input.next(); elementCount++; } } private void samplingProcess() { if (fraction <= THRESHOLD) { double u = Math.max(random.nextDouble(), EPSILON); int gap = (int) (Math.log(u) / -fraction); skipGapElements(gap); if (input.hasNext()) { currentElement = input.next(); currentCount = poisson_ge1(fraction); } } else { while (input.hasNext()) { currentElement = input.next(); currentCount = poissonDistribution.sample(); if (currentCount > 0) { break; } } } } }; } }