List of usage examples for java.lang Math cos
@HotSpotIntrinsicCandidate public static double cos(double a)
From source file:beans.BL.java
public void test(TPVObject tpv) { /**/*from w w w. j av a 2s.co m*/ * Neue Idee alles zu speichern */ /*Umwandlung von Double in LDT Problem das es zu ungenau ist Double test = (tpv.getTimestamp()); long int_timestamp = test.longValue(); LocalDateTime ldt = LocalDateTime.ofEpochSecond(int_timestamp, 0, ZoneOffset.UTC); */ System.out.println( tpv.getTimestamp() + " Longitude: " + tpv.getLatitude() + " Latitude: " + tpv.getLongitude()); //TODO: /** * Algorithmus um die gefahrenen Km zu messen */ if (tpv.getSpeed() > 2.77) { if (latOld == -1 && lonOld == -1) { latNew = tpv.getLatitude(); lonNew = tpv.getLongitude(); } latOld = latNew; lonOld = lonNew; latNew = tpv.getLatitude(); lonNew = tpv.getLongitude(); double R = 6371000; // metres double dLat = Math.toRadians(latNew - latOld); double dLon = Math.toRadians(lonNew - lonOld); double a = Math.sin(dLat / 2) * Math.sin(dLat / 2) + Math.cos(Math.toRadians(latOld)) * Math.cos(Math.toRadians(latNew)) * Math.sin(dLon / 2) * Math.sin(dLon / 2); double c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a)); d = d + (R * c); System.out.println("Distance:" + d + "Speed:" + tpv.getSpeed()); } Point point = new Point(LocalDateTime.now(), tpv.getLatitude(), tpv.getLongitude(), d, tpv.getSpeed(), track); try { points.put(point); } catch (InterruptedException ex) { Logger.getLogger(BL.class.getName()).log(Level.SEVERE, null, ex); } try { System.out.println("points size:" + points.size()); System.out.println("traks size:" + tracks.size()); for (Track track1 : tracks) { System.out.println("track: " + track1.getId()); } data_manager.writeFile(points); } catch (ParseException ex) { Logger.getLogger(BL.class.getName()).log(Level.SEVERE, null, ex); } catch (IOException ex) { Logger.getLogger(BL.class.getName()).log(Level.SEVERE, null, ex); } }
From source file:Randoms.java
/** Return a random double drawn from a Gaussian distribution with mean 0 and variance 1. */ public synchronized double nextGaussian() { if (!haveNextGaussian) { double v1 = nextUniform(), v2 = nextUniform(); double x1, x2; x1 = Math.sqrt(-2 * Math.log(v1)) * Math.cos(2 * Math.PI * v2); x2 = Math.sqrt(-2 * Math.log(v1)) * Math.sin(2 * Math.PI * v2); nextGaussian = x2;/*from w w w .j a v a 2 s . c om*/ haveNextGaussian = true; return x1; } else { haveNextGaussian = false; return nextGaussian; } }
From source file:com.opengamma.analytics.math.TrigonometricFunctionUtils.java
public static ComplexNumber sinh(final ComplexNumber z) { Validate.notNull(z, "z"); return new ComplexNumber(Math.sinh(z.getReal()) * Math.cos(z.getImaginary()), Math.cosh(z.getReal()) * Math.sin(z.getImaginary())); }
From source file:com.nextbreakpoint.nextfractal.mandelbrot.core.Expression.java
public static double funcCos(double x) { return Math.cos(x); }
From source file:net.sf.dsp4j.octave.packages.signal_1_2_0.NCauer.java
public NCauer(double Rp, double Rs, int n) { // Cutoff frequency = 1: double wp = 1; // Stop band edge ws: double ws = __ellip_ws(n, Rp, Rs); double k = wp / ws; double k1 = Math.sqrt(1.0 - Math.pow(k, 2)); double q0 = (1.0 / 2.0) * ((1.0 - Math.sqrt(k1)) / (1 + Math.sqrt(k1))); double q = q0 + 2.0 * Math.pow(q0, 5) + 15.0 * Math.pow(q0, 9) + 150.0 * Math.pow(q0, 13); //%(....) double D = (Math.pow(10, 0.1 * Rs) - 1.0) / (Math.pow(10, (0.1 * Rp)) - 1.0); //Filter order maybe this, but not used now: //n=ceil(log10(16*D)/log10(1/q)) double l = (1.0 / (2.0 * n)) * Math.log((Math.pow(10, 0.05 * Rp) + 1.0) / (Math.pow(10, 0.05 * Rp) - 1.0)); double sig01 = 0; double sig02 = 0; for (int m = 0; m <= 30; m++) { sig01 = sig01 + Math.pow((-1), m) * Math.pow(q, (m * (m + 1))) * Math.sinh((2 * m + 1) * l); }/* ww w . j a va 2 s . c o m*/ for (int m = 1; m <= 30; m++) { sig02 = sig02 + Math.pow(-1.0, m) * Math.pow(q, (Math.pow(m, 2))) * Math.cosh(2 * m * l); } double sig0 = Math.abs((2.0 * Math.pow(q, (1.0 / 4.0)) * sig01) / (1.0 + 2.0 * sig02)); double w = Math.sqrt((1.0 + k * Math.pow(sig0, 2)) * (1.0 + Math.pow(sig0, 2) / k)); int r; if (n % 2 != 0) { r = (n - 1) / 2; } else { r = n / 2; } double[] wi = new double[r]; for (int ii = 1; ii <= r; ii++) { double mu; if (n % 2 != 0) { mu = ii; } else { mu = (double) ii - 0.5; } double soma1 = 0; for (int m = 0; m <= 30; m++) { soma1 = soma1 + 2.0 * Math.pow(q, (1.0 / 4.0)) * (Math.pow(-1.0, m) * Math.pow(q, (m * (m + 1))) * Math.sin(((2.0 * m + 1.0) * Math.PI * mu) / n)); } double soma2 = 0; for (int m = 1; m <= 30; m++) { soma2 = soma2 + 2.0 * (Math.pow(-1.0, m) * Math.pow(q, (Math.pow(m, 2))) * Math.cos((2.0 * m * Math.PI * mu) / n)); } wi[ii - 1] = (soma1 / (1.0 + soma2)); } double[] Vi = new double[wi.length]; for (int i = 0; i < wi.length; i++) { Vi[i] = Math.sqrt((1.0 - (k * (Math.pow(wi[i], 2)))) * (1.0 - (Math.pow(wi[i], 2)) / k)); } double[] A0i = new double[wi.length]; for (int i = 0; i < wi.length; i++) { A0i[i] = 1.0 / (Math.pow(wi[i], 2)); } double[] sqrA0i = new double[wi.length]; for (int i = 0; i < wi.length; i++) { sqrA0i[i] = 1.0 / wi[i]; } double[] B0i = new double[wi.length]; for (int i = 0; i < wi.length; i++) { B0i[i] = (Math.pow((sig0 * Vi[i]), 2) + Math.pow((w * wi[i]), 2)) / Math.pow((1.0 + Math.pow(sig0, 2) * Math.pow(wi[i], 2)), 2); } double C01; if (wi.length == 0) { C01 = 1.0; } else { C01 = B0i[0] / A0i[0]; for (int i = 1; i < wi.length; i++) { C01 *= B0i[i] / A0i[i]; } } //Gain T0: if (n % 2 != 0) { T0 = sig0 * C01 * Math.sqrt(ws); } else { T0 = Math.pow(10, (-0.05 * Rp)) * C01; } //zeros: zer = new Complex[sqrA0i.length * 2]; for (int i = 0; i < sqrA0i.length; i++) { zer[i] = Complex.valueOf(0.0, sqrA0i[i]); zer[i + sqrA0i.length] = Complex.valueOf(0.0, -sqrA0i[i]); } //poles: pol = new Complex[Vi.length * 2]; for (int i = 0; i < Vi.length; i++) { pol[i] = new Complex(-2.0 * sig0 * Vi[i], 2.0 * wi[i] * w) .divide(2.0 * (1 + Math.pow(sig0, 2) * Math.pow(wi[i], 2))); pol[i + Vi.length] = new Complex(-2.0 * sig0 * Vi[i], -2.0 * wi[i] * w) .divide(2.0 * (1 + Math.pow(sig0, 2) * Math.pow(wi[i], 2))); } //If n odd, there is a real pole -sig0: if (n % 2 != 0) { pol = Arrays.copyOf(pol, pol.length + 1); pol[pol.length - 1] = new Complex(-sig0); } for (int i = 0; i < pol.length; i++) { pol[i] = pol[i].multiply(Math.sqrt(ws)); } for (int i = 0; i < zer.length; i++) { zer[i] = zer[i].multiply(Math.sqrt(ws)); } }
From source file:com.kentdisplays.synccardboarddemo.Page.java
/** * Sets up the drawing object data for use in an OpenGL ES context. * * @param is InputStream to the page to load the path data from. *///from ww w.j a va2 s . c om public Page(InputStream is, int glProgram, int direction) { this.mModel = new float[16]; this.mGlProgram = glProgram; // Calculate the coordinates from the given path. ArrayList<Path> paths = pathsFromSamplePageInputStream(is); float finalCoords[] = {}; float finalNormals[] = {}; float finalColors[] = {}; mNumberOfPaths = paths.size(); for (int i = 0; i < mNumberOfPaths; i++) { Path path = paths.get(i); float x1 = (path.x1 / 13942 * 2) - 1; float y1 = (path.y1 / 20280 * 2) - 1; float x2 = (path.x2 / 13942 * 2) - 1; float y2 = (path.y2 / 20280 * 2) - 1; float width = path.width / 3000; width = width < 0.013f ? 0.013f : width; // Width should be at least 0.013 float distance = (float) Math.sqrt(Math.pow(x2 - x1, 2) + Math.pow(y2 - y1, 2)); float angle = (float) Math.PI / 2 - (float) Math.asin((x2 - x1) / distance); float xdiff = (width / 2) * (float) Math.sin(angle); float ydiff = (width / 2) * (float) Math.cos(angle); float coords[] = { x1 - xdiff, y1 - ydiff, 1.0f, // top left x2 - xdiff, y2 - ydiff, 1.0f, // bottom left x1 + xdiff, y1 + ydiff, 1.0f, // top right x2 - xdiff, y2 - ydiff, 1.0f, // bottom left x2 + xdiff, y2 + ydiff, 1.0f, // bottom right x1 + xdiff, y1 + ydiff, 1.0f, // top right }; float normals[] = { 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, }; float colors[] = { 0.2f, 0.709803922f, 0.898039216f, 1.0f, 0.2f, 0.709803922f, 0.898039216f, 1.0f, 0.2f, 0.709803922f, 0.898039216f, 1.0f, 0.2f, 0.709803922f, 0.898039216f, 1.0f, 0.2f, 0.709803922f, 0.898039216f, 1.0f, 0.2f, 0.709803922f, 0.898039216f, 1.0f, }; finalCoords = Floats.concat(finalCoords, coords); finalNormals = Floats.concat(finalNormals, normals); finalColors = Floats.concat(finalColors, colors); } ByteBuffer bbVertices = ByteBuffer.allocateDirect(finalCoords.length * 4); bbVertices.order(ByteOrder.nativeOrder()); mPageVertices = bbVertices.asFloatBuffer(); mPageVertices.put(finalCoords); mPageVertices.position(0); ByteBuffer bbNormals = ByteBuffer.allocateDirect(finalNormals.length * 4); bbNormals.order(ByteOrder.nativeOrder()); mPageNormals = bbNormals.asFloatBuffer(); mPageNormals.put(finalNormals); mPageNormals.position(0); ByteBuffer bbColors = ByteBuffer.allocateDirect(finalColors.length * 4); bbColors.order(ByteOrder.nativeOrder()); mPageColors = bbColors.asFloatBuffer(); mPageColors.put(finalColors); mPageColors.position(0); // Correctly place the page in the world. Matrix.setIdentityM(mModel, 0); switch (direction) { case 0: Matrix.translateM(mModel, 0, 0, 0, -mDistance); //Front. break; case 1: Matrix.translateM(mModel, 0, -mDistance, 0, 0); // Left. Matrix.rotateM(mModel, 0, 90, 0, 1f, 0); break; case 2: Matrix.translateM(mModel, 0, 0, 0, mDistance); // Behind. Matrix.rotateM(mModel, 0, 180, 0, 1f, 0); break; case 3: Matrix.translateM(mModel, 0, mDistance, 0, 0); // Right. Matrix.rotateM(mModel, 0, 270, 0, 1f, 0); break; } }
From source file:Satellite.java
public static double[] Convert_To_Lat_Long(Vector3D posVec) { double Xcomp = posVec.getX(); double Ycomp = posVec.getY(); double Zcomp = posVec.getZ(); double longitude; double latitude; double altitude; //Done so all cases of longitudes are right if (Ycomp > 0) { if (Xcomp > 0) { longitude = Math.toDegrees(Math.atan(Ycomp / Xcomp)); } else {/* w w w . j a v a 2s. c o m*/ longitude = 180 - Math.toDegrees(Math.atan(Math.abs(Ycomp / Xcomp))); } } else { if (Xcomp > 0) { longitude = -1 * Math.toDegrees(Math.atan(Math.abs(Ycomp / Xcomp))); } else { longitude = -1 * (180 - Math.toDegrees(Math.atan(Ycomp / Xcomp))); } } //Calculate latitude latitude = Math.toDegrees(Math.atan(Zcomp / Math.sqrt(Xcomp * Xcomp + Ycomp * Ycomp))); //Calculate radius and altitude double EER = Constants.WGS84_EARTH_EQUATORIAL_RADIUS; //Earth Equator Radius in meters double EPR = EER - EER * Constants.WGS84_EARTH_FLATTENING; //Earth Polar Radius in meters double earthRadius = Math .sqrt((Math.pow(EPR * EPR * Math.cos(latitude), 2) + Math.pow(EER * EER * Math.cos(latitude), 2)) / (Math.pow(EPR * Math.cos(latitude), 2) + Math.pow(EER * Math.cos(latitude), 2))); double orbitRadius = Math.sqrt(Xcomp * Xcomp + Ycomp * Ycomp + Zcomp * Zcomp); altitude = orbitRadius - earthRadius; return new double[] { latitude, longitude, altitude }; }
From source file:edu.umass.cs.iesl.pdf2meta.cli.extract.pdfbox.pagedrawer.Invoke.java
/** * process : Do : Paint the specified XObject (section 4.7). * @param operator The operator that is being executed. * @param arguments List/*from ww w .ja va 2 s . c om*/ * @throws java.io.IOException If there is an error invoking the sub object. */ public void process(PDFOperator operator, List<COSBase> arguments) throws IOException { GraphicsAwarePDFStreamEngine drawer = (GraphicsAwarePDFStreamEngine) context; PDPage page = drawer.getPage(); COSName objectName = (COSName) arguments.get(0); Map xobjects = drawer.getResources().getXObjects(); PDXObject xobject = (PDXObject) xobjects.get(objectName.getName()); if (xobject == null) { log.warn("Can't find the XObject for '" + objectName.getName() + "'"); } else if (xobject instanceof PDXObjectImage) { PDXObjectImage image = (PDXObjectImage) xobject; try { image.setGraphicsState(drawer.getGraphicsState()); BufferedImage awtImage = image.getRGBImage(); if (awtImage == null) { log.warn("getRGBImage returned NULL"); return;//TODO PKOCH } int imageWidth = awtImage.getWidth(); int imageHeight = awtImage.getHeight(); double pageHeight = drawer.getPageSize().getHeight(); log.debug("imageWidth: " + imageWidth + "\t\timageHeight: " + imageHeight); Matrix ctm = drawer.getGraphicsState().getCurrentTransformationMatrix(); float yScaling = ctm.getYScale(); float angle = (float) Math.acos(ctm.getValue(0, 0) / ctm.getXScale()); if (ctm.getValue(0, 1) < 0 && ctm.getValue(1, 0) > 0) angle = (-1) * angle; ctm.setValue(2, 1, (float) (pageHeight - ctm.getYPosition() - Math.cos(angle) * yScaling)); ctm.setValue(2, 0, (float) (ctm.getXPosition() - Math.sin(angle) * yScaling)); // because of the moved 0,0-reference, we have to shear in the opposite direction ctm.setValue(0, 1, (-1) * ctm.getValue(0, 1)); ctm.setValue(1, 0, (-1) * ctm.getValue(1, 0)); AffineTransform ctmAT = ctm.createAffineTransform(); ctmAT.scale(1f / imageWidth, 1f / imageHeight); drawer.drawImage(awtImage, ctmAT); } catch (Exception e) { e.printStackTrace(); log.error(e, e); } } else if (xobject instanceof PDXObjectForm) { // save the graphics state context.getGraphicsStack().push((PDGraphicsState) context.getGraphicsState().clone()); PDXObjectForm form = (PDXObjectForm) xobject; COSStream invoke = (COSStream) form.getCOSObject(); PDResources pdResources = form.getResources(); if (pdResources == null) { pdResources = page.findResources(); } // if there is an optional form matrix, we have to // map the form space to the user space Matrix matrix = form.getMatrix(); if (matrix != null) { Matrix xobjectCTM = matrix.multiply(context.getGraphicsState().getCurrentTransformationMatrix()); context.getGraphicsState().setCurrentTransformationMatrix(xobjectCTM); } getContext().processSubStream(page, pdResources, invoke); // restore the graphics state context.setGraphicsState((PDGraphicsState) context.getGraphicsStack().pop()); } }
From source file:com.alvermont.terraj.planet.project.HeightfieldGenerator.java
/** * Generate the heightfield data// ww w. j a v a 2 s . c o m */ public void generate() { final int width = getParameters().getProjectionParameters().getWidth(); final int height = getParameters().getProjectionParameters().getHeight(); final double lat = getParameters().getProjectionParameters().getLatitudeRadians(); final double lon = getParameters().getProjectionParameters().getLongitudeRadians(); final double scale = getParameters().getProjectionParameters().getScale(); heights = new int[width][height]; final double sla = Math.sin(lat); final double cla = Math.cos(lat); final double slo = Math.sin(lon); final double clo = Math.cos(lon); cacheParameters(); depth = (3 * ((int) (log2(scale * height)))) + 6; double x; double y; double z; double x1; double y1; double z1; for (int j = 0; j < height; ++j) { for (int i = 0; i < width; ++i) { x = ((2.0 * i) - width) / height / scale; y = ((2.0 * j) - height) / height / scale; if (((x * x) + (y * y)) > 1.0) { heights[i][j] = 0; } else { z = Math.sqrt(1.0 - (x * x) - (y * y)); x1 = (clo * x) + (slo * sla * y) + (slo * cla * z); y1 = (cla * y) - (sla * z); z1 = (-slo * x) + (clo * sla * y) + (clo * cla * z); final double heightValue = planet1(x1, y1, z1); heights[i][j] = (int) (10000000.0 * heightValue); } } } }
From source file:Hexagon.java
public Hexagon(Point2D center, int size) { super();//w ww .j av a 2s . c om this.center = center; this.size = size; /** * MATH: * With the hexagon points={TOP, UPPER-RIGHT, LOWER-RIGHT, BOTTOM, LOWER-LEFT, UPPER-RIGHT} * size = length of each actual segment of the hexagon * width = bounding rectangle width * height = bounding rectangle height * each inner angle is 120 degrees * outside angles are 30-60-90 triangles with 30 near TOP and BOTTOM and 60 near sides * hOffset = height difference between 'size' edge and bounding rectangle corners * wOffset = width difference between TOP/BOTTOM points and bounding rectangle corners */ double thirtyDegrees = Math.toRadians(30); hOffset = Math.sin(thirtyDegrees) * size; wOffset = Math.cos(thirtyDegrees) * size; height = (2 * hOffset) + size; width = (2 * wOffset); double left = center.getX() - (width / 2); double right = center.getX() + (width / 2); double top = center.getY() - (height / 2); double bottom = center.getY() + (height / 2); boundingBox = new Rectangle2D.Double(left, top, width, height); boundingCorners = new HashMap<BoundingCorner, Point2D>(); boundingCorners.put(BoundingCorner.TopRight, new Point2D.Double(right, top)); boundingCorners.put(BoundingCorner.TopLeft, new Point2D.Double(left, top)); boundingCorners.put(BoundingCorner.BottomRight, new Point2D.Double(right, bottom)); boundingCorners.put(BoundingCorner.BottomLeft, new Point2D.Double(left, bottom)); corners = new HashMap<Corner, Point2D>(); corners.put(Corner.Top, new Point2D.Double(center.getX(), top)); corners.put(Corner.UpperRight, new Point2D.Double(right, (top + hOffset))); corners.put(Corner.LowerRight, new Point2D.Double(right, (bottom - hOffset))); corners.put(Corner.Bottom, new Point2D.Double(center.getX(), bottom)); corners.put(Corner.LowerLeft, new Point2D.Double(left, (bottom - hOffset))); corners.put(Corner.UpperLeft, new Point2D.Double(left, (top + hOffset))); for (Corner corner : Corner.values()) { Point2D p2d = corners.get(corner); addPoint((int) p2d.getX(), (int) p2d.getY()); } }